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Abstract

Passive alloys like stainless steels are prone to localized corrosion in chlorides containing
environments. The greater the depth of the localized corrosion phenomenon, the more
dramatic the related damage that can lead to a structure weakening by fast perforation. In
practical situations, because measurements are time consuming and expensive, the challenge
is usually to predict the maximum pit depth that could be found in a large scale installation
from the processing of a limited inspection data. As far as the parent distribution of pit depths
is assumed to be of exponential type, the most successful method was found in the application
of the statistical extreme-value analysis developed by Gumbel.

This study aims to present a new and alternative methodology to the Gumbel approach with a
view towards accurately estimating the maximum pit depth observed on a ferritic stainless
steel AISI 409 subjected to an accelerated corrosion test (ECC1) used in automotive industry.
This methodology consists in characterising and modelling both the morphology of pits and
the statistical distribution of their depths from a limited inspection dataset. The heart of the
data processing is based on the combination of two recent statistical methods that avoid
making any choice about the type of the theoretical underlying parent distribution of pit
depths: the Generalized Lambda Distribution (GLD) is used to model the distribution of pit
depths and the Bootstrap technique to determine a confidence interval on the maximum pit
depth.

Keywords: Pit depth, extreme value statistics, Bootstrap, limited inspection data, safety.
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1. Introduction

The major corrosion mode for passive alloys exposed to an aggressive environment
containing halide anions is not general corrosion but rather localized corrosion like crevice
corrosion or pitting. As far as this latter type of localized corrosion is concerned, the
prediction of the maximum pit depth is usually of paramount importance since this statistical
estimates, rather than the average depth, decides the risk of perforation and therefore the
lifetime of installations like water pipes, heat exchanger or oil tank used for example in
automotive industry, chemical plants or nuclear power stations [1-10]. For this reason,
statistical extreme value analysis can be considered as a valuable tool to develop reliable
maintenance methods intended to the control of durability or safety in most critical
applications. In this context, the Gumbel distribution is often used to predict the maximum pit
depth that could be found in a large-scale installation by using only a small number of
samples having a small area [1-6].

The extreme value theory leads to formulate the following analytical expressions for the
Gumbel distribution, ( )xFX , and the related maximum pit depth, maxx  [11]:

( ) ))/)(exp(exp( αλ−−−= xxFX (1)

)ln(max Tx αλ +=  with s
ST = (2)

where the constants α , λ  and T  are respectively called the scale parameter, the location
parameter and the return period. In practical situations, because measurements are time
consuming and expensive, the constant parameters α , λ  are usually estimated by analysing
limited inspection dataset resulting from measurements performed on small areas of size s.
Then, the maximum pit depth that could be predicted in a larger area of size S is obtained by
extrapolation using the value of the return period T . Despite its success, the Gumbel
approach unfortunately suffers major drawbacks already detailed in [12]. In particular, the
analytical expression of the Gumbel distribution is an asymptotic form derived from the
extraction of the largest values from a parent distribution, which is assumed to be
theoretically of exponential type. Moreover, even if the parent distribution is truly of
exponential type, only few large values are usually recorded in the case of a limited inspection
dataset. As a consequence, the difference between the expected model and the unknown true
distribution may be significant in the right tail region. In other words, in the case of limited
inspection data, the prediction is far from being accurate in this region of interest since it
corresponds to the extreme values of any distribution.

Contrary to the Gumbel approach, the new and alternative methodology presented in this
paper combines two recent statistical theories that can be applied regardless of the type of the
theoretical underlying parent distribution of corrosion pit depths. This methodology is applied
to predict, from a limited inspection dataset, the maximum pit depth that can be found on a
ferritic stainless steel AISI 409 sample subjected to an accelerated corrosion test (ECC1) used
in automotive industry.



3

96.3 µm

1.01 mm

1.41 mm

Alpha = 325° Beta = 67°

123 µm

0.642 mm 0.66 mm

Alpha = 220° Beta = 70°

2. Experimental procedure

2.1) Presentation of the material and the corrosion test

The studied material was a ferritic stainless steel AISI 409 used in automotive industry and
produced by the society Arcelor (Isbergues, France). A sample of this material (area: 50 cm²,
thickness: 1.5 mm) has been placed in an indoor equipment located in a research centre of this
society to undergo an accelerated corrosion test that simulates automotive field conditions.
This accelerated corrosion test, already described by Bourdeau et al. [13], is basically
composed of a salt fog spraying and cyclical wet and dry periods. Salt spray solution is a 1-%
NaCl at pH4 lowered by sulfuric acid. Temperature around the test was maintained at 35°C
and the total duration of the test was 2 weeks.

2.2) Characterisation and distribution of pits formed during the corrosion test

Fig. 1a shows the spatial distribution of the corrosion pits generated at the surface of the
sample during this accelerated corrosion test. This observed distribution results from the
random impingement of the droplets of the salt fog spraying; initiation and propagation of
corrosion pits indeed is promoted at sites where the chloride concentration is higher than on
the rest of the tested sample surface.

Fig.1 a) Optical macrography showing the pits formed during the accelerated corrosion test
at the surface of the ferritic stainless steel sample, b) Inverted view of an isolated pit recorded
by the means of a 3D roughness profilometer, c) Inverted view of a cluster of pits.

Fig. 2a shows the experimental frequency distribution of approximately 200 values of pit
depth laboriously measured by the means of an optical microscope. This global distribution
contains both isolated pits and clusters of pits as respectively illustrated in Fig. 1b and c. It
was already shown in a previous paper that, for a limited sample of 29 isolated pits extracted
from the global distribution, the pit morphology was better described by a Gaussian model
rather than by a spherical shape [14]. Fig. 2b. shows the experimental pit depth frequency
distribution related to these 29 isolated pits which morphology was characterised by the
means of a 3D-roughness profilometer. For this limited dataset, the recorded value of the
maximum pit depth is 121 µm whereas it is 165 µm in the case of the global distribution.

1 cm
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Fig. 2: Experimental frequency distribution of the corrosion pit depths measured by a) an
optical microscope (approximately 200 pits were considered), b) a 3D-roughness
profilometer (29 pits were considered).

3. Modelling of the pit depths distribution using the GLD method

The Generalized Lambda Distribution (GLD) method was used in this paper to model the
experimental frequency of the corrosion pit depths presented in Fig.2b; i.e. for the limited
dataset of the 29 isolated pits under consideration in this study.

3.1) Brief presentation of the GLD method [15]

The generalized lambda distribution family is specified in terms of its percentile function
(called also the inverse distribution function) with four parameters 1λ , 2λ , 3λ  and 4λ :

( ) ( )( ) 214321 43 1,,,; λλλλλλ λλ yyyQX −−+= (3)
The parameters 1λ  and 2λ  are, respectively, the location and scale parameters, while 3λ  and

4λ  determine respectively the skewness and the kurtosis of the GLD.

The probability density function (PDF) can then be easily expressed from the percentile
function of equation (3):

( ) ( )( )1
4

1
32 43 1 −− −+= λλ λλλ yyxf X (4)

Basically, the problem consists in determining the parameters 1λ , 2λ , 3λ , 4λ  which define
the GLD giving the best fitting curve with the experimental frequency distribution. Dedicated
to that purpose, the method of percentiles has been used to assess in a first time the following
sample statistics:
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where pπ̂  denotes the score indicating that p100  percent of the distribution consists of scores
that are smaller than that particular value and u  is a number that must be chosen between 0
and 0.25. In the case of a limited dataset, as for example in this study, the authors of the
method recommend to choose an intermediate value 1.0=u  [15].

Then, from the definition of the GLD, Karian et al. [15] express the GLD counterparts of the
above statistics as follows:
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The determination of the best fitting GLD ( 1λ , 2λ , 3λ , 4λ ) is performed by solving this
system of 4 equations estimating jρ  value by jρ̂  with { }4,3,2,1∈j . Since the overall

system is highly non-linear, only the subsystem 33ˆ ρρ =  and 44ˆ ρρ =  that involves 3λ  and

4λ  has been solved in this study by minimising the following function thanks to a steepest
gradient algorithm:

( ) ( )∑
=

−=Ψ
4

3

2
43 ˆ,

j
jj ρρλλ (13)

When the values of 3λ  and 4λ  that minimise the above equation are found, so 2λ  and 1λ
can be determined using successively equations (10) and (9).

It must be outlined that the GLD have been shown to fit well many of the most important
theoretical distributions including exponential type ones and that the goodness of fit was
particularly significant in the right tail region; region corresponding to the extreme values
[15]. Nevertheless, the main advantage of using the GLD method is that it can be applied
regardless of the type of the theoretical underlying parent distribution of corrosion pit depths.

3.2) Results

The values of the percentiles related to the experimental pit depth frequency distribution of
the limited dataset of 29 isolated pits under consideration in this study are reported in Table I.
The values of these percentiles have been inserted in equations (5) to (8) to calculate at a first
stage the values of 1ρ̂ , 2ρ̂ , 3ρ̂  and 4ρ̂  which are also reported in the same table.

75.0π̂ 5.0π̂ 25.0π̂ 1.0π̂ 9.0π̂ 1ρ̂ 2ρ̂ 3ρ̂ 4ρ̂
88.89 52.87 31.07 19.15 117.8 52.87 98.65 0.519 0.586

Tab. 1: Values of the percentiles of interest together with the related values of 1ρ̂ , 2ρ̂ , 3ρ̂
and 4ρ̂  describing the experimental limited dataset presented in Fig.2b.

At a second stage, the values of 3ρ̂  and 4ρ̂  have been used to calculate the values of 3λ  and

4λ  by solving the subsystem 33ˆ ρρ =  and 44ˆ ρρ =  using equations (11) to (13). These
calculations were performed by the means of a computer algorithm we especially developed
for this task. The numerical results of the minimisation processing are shown in Fig. 3 which
presents both a 3D view and a contour plot of the values of the function ( )43,λλΨ  for

5.20 3 << λ  and 500 4 << λ .
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Fig. 3: Contour plot of the values of the function ( )43,λλΨ  related to the 3D view inserted
on the right bottom corner. The white arrow indicates the minimum value of the function.

The minimum value of the function ( )43,λλΨ  is found for the following pair ( 01.23 =λ ,
9.274 =λ ) which subsequently yields to the pair ( 13.241 =λ , 0086.02 =λ ) using equations

(9) and (10). Inserting these four values in equation (4) then enables to express formally the
probability density function that gives the best fitting curve with the experimental frequency
distribution. This best fitting probability density function is plotted in Fig. 4.

Fig.4: Probability density function corresponding to Eq. (4) for parameters ( 13.241 =λ ,
0086.02 =λ , 01.23 =λ , 9.274 =λ )

4. Prediction of the maximum pit depth combining the GLD and the Bootstrap
methods

The Computer-Based Bootstrap Method (CBBM) was used in this study to assess the
influence of a perturbation in the scores of the experimental dataset (which is limited) on the
shape (that depends on the estimation of the parameters 1λ , 2λ , 3λ  and 4λ  values) of the
resulting probability function determined by applying the GLD method and the related
variability of the predicted maximum pit depth.
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4.1) Brief presentation of the Computer-Based Bootstrap Method [16, 17]

Based on the mathematical resampling technique, the main principle of the CBBM consists in
generating a high number I  of simulated Bootstrap samples from the original dataset using
the power of a modern computer. The original dataset consists of either experimental or
simulated scores. A Bootstrap sample ( )]1[ Itoii ∈  of size n , noted ),...,,( 21

i
n

ii ppp , is a
collection of n  values simply obtained by randomly sampling with replacement from the
original data scores ),...,,( 21 nppp , each of them having a probability equal to n

1  to be

selected. A Bootstrap sample contains therefore scores of the original dataset; some appearing
zero times, some appearing one, some appearing twice, etc.

4.2) Procedure and results

A Bootstrap algorithm was computed to generate 100=I  simulated Bootstrap samples of
size 29=n  from the 29 experimental values of isolated pit depth under consideration in this
study. For each simulated Bootstrap sample ( )]1001[ toii ∈ , new values of the parameters
noted i

1λ , i
2λ , i

3λ  and i
4λ  are then determined (by using the method described in part 3) to

obtain a new iGLD  ( i
1λ , i

2λ , i
3λ , i

4λ ) that will be called a ‘Bootstrapped GLD’.

To illustrate the result of this procedure, an example of six Bootstrapped GLDs related to six
Bootstrap samples are presented in Fig. 5. These probability density functions resulting from
the combination of the CBBM and the GLD methods simulate in fact perturbed distributions
of pit depth equivalent to the experimental one.

Fig. 5: Six examples of Bootstrapped probability density functions obtained by processing six
Bootstrap samples using the GLD method.

The equation of a given cumulative Bootstrapped iGLD ( i
1λ , i

2λ , i
3λ , i

4λ ) is:

( ) ( )( ) iii ii

yyyp 21
43 1 λλ λλ −−+= (14)
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where y  is a uniform random number between 0 and 1 and ( )ypi  is the simulated corrosion
pit depth related to this number.

For each Bootstrap iGLD ( i
1λ , i

2λ , i
3λ , i

4λ ), the CBBM was used again to generate 5000=J
Bootstrap samples of size 29=n  using equation (14). The highest score i

jx  (i.e. the
maximum simulated pit depth) of each Bootstrap sample ( )]50001[ tojj ∈  related to the
Bootstrap iGLD ( i

1λ , i
2λ , i

3λ , i
4λ ) is then retained giving finally a set of 500000 extreme

values when i  varies from 1 to 100. Fig. 6 shows the Bootstrapped distribution of this set of
maximum pit depth from which traditional statistic estimates like the mean and the 90%
symmetrical confidence interval (i.e. the difference between the 95th and the 5th percentiles)
can be easily determined to assess respectively the central tendency and the dispersion.

Fig. 6: Bootstrapped probability density function of the 500000 extreme pit depths extracted
from the 500000 simulated Bootstrap samples. The full vertical line added on this figure call
back the maximum value of the limited dataset (29 values of pit depths measured by the means
of a 3D-roughness profilometer) and the dashed one the maximum value of the global
distribution (approximately 200 values of pit depths measured by the means of an optical
microscope).

The calculated mean of the pit depth extreme values is 129 µm and 90% of these extreme
values lie between 98 µm and 153 µm. It is very interesting to note that the maximum value
of corrosion pit depths assessed in the case of the global distribution (characterised by the
means of an optical microscope) is accurately predicted by applying our methodology to a
limited dataset (characterised by the means of a 3D roughness profilometer.

5. Conclusions

A new and alternative methodology to the Gumbel approach was presented in this paper with
a view towards predicting from a limited inspection data the maximum depth of pits that
propagated on a sample of ferritic stainless steel during an accelerated corrosion test.
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Based on the power of modern computer, this methodology combines two recent statistical
methods that can be applied regardless of the type of the theoretical underlying parent
distribution of pit depths: the first one, the Generalized Lambda Distribution method, was
used to model the distribution of pit depths and the second one, the Computer-Based
Bootstrap Method, to simulate distributions of corrosion pit depths equivalent to the
experimental one and to predict the maximum pit depth from the limited dataset under study.
The application of this methodology to this limited dataset leads to an accurate prediction of
the maximum value observed in a larger dataset.

While corrosion pits have been generated in an atmospheric environment in this study, the
alternative methodology presented in this paper is thought to be also applicable for pits
generated in aqueous solutions since it only necessitates the knowledge of the distribution of a
morphological feature (i.e. pit depth). Such a methodology, which is aimed to improve
maintenance procedures in the field of corrosion, can be also applied to any kind of defects
like inclusions or pores existing in the microstructure of engineering materials.

6. References

1. T. Shibata, ISIJ Int., 31 (1991), 115.
2. A. Turnbull, Brit. Corros. J., 28 (1993), 297.
3. S. Khomukai and K. Kasahara, J. Res. Natl. Inst. Stand. Tech., 99 (1994), 321.
4. T. Shibata, Corrosion, 52 (1996), 813.
5. Y. Ishikawa, T. Ozaki, N. Hosaka and O. Nishida: Trans. ISIJ, 22 (1982), 977.
6. S. Yamamoto and T. Sakauchi, Int. J. Mater. Prod. Tech., 6 (1991), 37.
7. J.W. Provan and E.S. Rodriguez, Corrosion, 45 (1989), 179.
8. A.K. Sheikh, J.K. Boah and D.A. Hansen, Corrosion, 46 (1990), 190.
9. A.K. Sheikh, J.K. Boah and M. Younas, Rel. Eng. Sys. Saf., 25 (1989), 1.
10. E. Sato and T. Murata, Nippon Steel Technical Report, 32 (1987), 54.
11. E.J. Gumbel, “Statistical Theory of Extreme Values and Some Practical Applications”,

Applied Mathematics Series 33, National Bureau of Standards, Washington, D.C., (Feb.
1954).

12. D. Najjar, M. Bigerelle, C. Lefebvre and A. Iost, ISIJ Int., 43 (2003), 720.
13. L. Bourdeau and A. Jussiaume, Proceedings of the conference Euroccor’97, Trondheim,

Norway, vol II (1997), 503.
14. D. Najjar, C. Lefebvre, L. Bourdeau, M. Bigerelle and A. Iost, Proceedings CDR of the

conference MATERIAUX 2002, Tours, France, (2002), Paper AF05006.
15. Z.A. Karian and E.J. Dudewicz, “Fitting Statistical Distributions, The Generalized

Lambda Distribution and Generalized Bootstrap Methods”, ed. Chapman & Hall, CRC
Press, Boca Raton, Florida (2000).

16. B. Efron, Ann. Stat., 7 (1979), 1.
17. B. Efron and R. Tibshirani, “An Introduction to the Bootstrap”, Chapman & Hall, New

York (1993).




