8 research outputs found

    OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis.: OPA1 isoforms in mitochondrial fusion or apoptosis.

    No full text
    In most eucaryote cells, release of apoptotic proteins from mitochondria involves fission of the mitochondrial network and drastic remodelling of the cristae structures. The intramitochondrial dynamin OPA1, as a potential central actor of these processes, exists as eight isoforms resulting from the alternate splicing combinations of exons (Ex) 4, 4b and 5b, which functions remain undetermined. Here, we show that Ex4 that is conserved throughout evolution confers functions to OPA1 involved in the maintenance of the DeltaPsi(m) and in the fusion of the mitochondrial network. Conversely, Ex4b and Ex5b, which are vertebrate specific, define a function involved in cytochrome c release, an apoptotic process also restricted to vertebrates. The drastic changes of OPA1 variant abundance in different organs suggest that nuclear splicing can control mitochondrial dynamic fate and susceptibility to apoptosis and pathologies

    OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals.

    No full text
    International audienceOPA1, an intra-mitochondrial dynamin GTPase, is a key actor of outer and inner mitochondrial membrane dynamic. OPA1 amino-terminal cleavage by PARL and m-AAA proteases was recently proposed to participate to the mitochondrial network dynamic in a DeltaPsi(m)-dependent way, and to apoptosis. Here, by an in vitro approach combining the use of purified mitochondrial fractions and mitochondrial targeting drugs, we intended to identify the central stimulus responsible for OPA1 cleavage. We confirm that apoptosis induction and PTPore opening, as well as DeltaPsi(m) dissipation induce OPA1 cleavage. Nevertheless, our experiments evidenced that decreased mitochondrial ATP levels, either generated by apoptosis induction, DeltaPsi(m) dissipation or inhibition of ATP synthase, is the common and crucial stimulus that controls OPA1 processing. In addition, we report that ectopic iron addition activates OPA1 cleavage, whereas zinc inhibits this process. These results suggest that the ATP-dependent OPA1 processing plays a central role in correlating the energetic metabolism to mitochondrial dynamic and might be involved in the pathophysiology of diseases associated to excess of iron or depletion of zinc and ATP

    Alpha6-Integrin Regulates FGFR1 Expression through the ZEB1/YAP1 Transcription Complex in Glioblastoma Stem Cells Resulting in Enhanced Proliferation and Stemness

    No full text
    Glioblastoma (GBM) is the most lethal primary brain tumor in adults and is known to be particularly aggressive and resistant to anti-cancer therapies, mainly due to the presence of GBM stem cells (GBMSC). By in vitro approaches supported by analysis from patients’ databases, we determined how α6-integrin and Fibroblast Growth Factor Receptor 1 (FGFR1) work in concert to regulate proliferation and stemness of GBMSC. We showed that α6-integrin regulates the expression of FGFR1 and its target gene Fokhead Box M1 (FOXM1) via the ZEB1/YAP1 transcription complex. These results were in accordance with the positive correlation observed in GBM between α6-integrin expression and its target genes ZEB1/YAP1, FGFR1, and FOXM1 in the databases, TCGA and Rembrandt. In addition, the clinical data demonstrate that GBM patients with high levels of the five genes signature, including α6-integrin, ZEB1/YAP1, FGFR1 and FOXM1, have a significantly shorter overall survival. In vitro, we observed a similar decrease in the expression of stemness-related factors, neurospheres forming capacity, as well as spheroids growth when α6-integrin or FGFR1 was blocked individually with specific siRNA, whereas the combination of both siRNA led to a significantly higher inhibition of spheres formation. These data suggest that co-administration of anti-FGFR1 and anti-α6-integrin could provide an improved therapeutic response in GBMSC

    Fungal lectin, XCL, is internalized via clathrin-dependent endocytosis and facilitates uptake of other molecules.

    Full text link
    The lectin isolated from Xerocomus chrysenteron (XCL) displays a toxic activity towards insects. In order to assess its possible mode of action and to gather useful data for its potential use in insect-resistant transgenic plants, we investigated the effects of XCL at the cellular level. Immunofluorescence microscopy studies revealed that XCL is rapidly internalized into small endocytic vesicles that further coalesce in the perinuclear region. We show that XCL is endocytosed by the clathrin-dependent pathway, and is delivered to late endosome/lysosome compartments. The internalization of XCL seems to be general since it occurs in different cell types such as insect (SF9) or mammalian (NIH-3T3 and Hela) cell lines. In the presence of XCL, the uptake of GFP and BSA is greatly enhanced, demonstrating that XCL facilitates endocytosis. Thus, XCL could serve as a delivery agent to facilitate the endocytosis of proteins that do not enter the cell alone

    Mitochondrial proteomic approach reveals galectin-7 as a novel BCL-2 binding protein in human cells

    No full text
    Our results reveal a network of new potential Bcl-2 partners identified through the Bcl-2 immunocapture and mass spectrometry approach and analyzed by gene ontology mining. Importantly, we report for the first time the identification of galectin-7, a member of a family of β-galactoside-binding lectins, as a new mitochondrial Bcl-2 interacting partner
    corecore