39 research outputs found

    Aggregate Risk Score Based on Markers of Inflammation, Cell Stress, and Coagulation Is an Independent Predictor of Adverse Cardiovascular Outcomes

    Get PDF
    Objectives: This study sought to determine an aggregate, pathway-specific risk score for enhanced prediction of death and myocardial infarction (MI). Background Activation of inflammatory, coagulation, and cellular stress pathways contribute to atherosclerotic plaque rupture. We hypothesized that an aggregate risk score comprised of biomarkers involved in these different pathways - high-sensitivity C-reactive protein (CRP), fibrin degradation products (FDP), and heat shock protein 70 (HSP70) levels - would be a powerful predictor of death and MI. Methods: Serum levels of CRP, FDP, and HSP70 were measured in 3,415 consecutive patients with suspected or confirmed coronary artery disease (CAD) undergoing cardiac catheterization. Survival analyses were performed with models adjusted for established risk factors. Results: Median follow-up was 2.3 years. Hazard ratios (HRs) for all-cause death and MI based on cutpoints were as follows: CRP ≥3.0 mg/l, HR: 1.61; HSP70 >0.625 ng/ml, HR; 2.26; and FDP ≥1.0 μg/ml, HR: 1.62 (p < 0.0001 for all). An aggregate biomarker score between 0 and 3 was calculated based on these cutpoints. Compared with the group with a 0 score, HRs for all-cause death and MI were 1.83, 3.46, and 4.99 for those with scores of 1, 2, and 3, respectively (p for each: <0.001). Annual event rates were 16.3% for the 4.2% of patients with a score of 3 compared with 2.4% in 36.4% of patients with a score of 0. The C statistic and net reclassification improved (p < 0.0001) with the addition of the biomarker score. Conclusions: An aggregate score based on serum levels of CRP, FDP, and HSP70 is a predictor of future risk of death and MI in patients with suspected or known CAD

    Composition of woody species in a dynamic forest-woodland-savannah mosaic in Uganda: implications for conservation and management

    Get PDF
    Forest¿woodland¿savannah mosaics are a common feature in the East African landscape. For the conservation of the woody species that occur in such landscapes, the species patterns and the factors that maintain it need to be understood. We studied the woody species distribution in a forest¿woodland¿savannah mosaic in Budongo Forest Reserve, Uganda. The existing vegetation gradients were analyzed using data from a total of 591 plots of 400 or 500 m2 each. Remotely sensed data was used to explore current vegetation cover and the gradients there in for the whole area. A clear species gradient exists in the study area ranging from forest, where there is least disturbance, to wooded grassland, where frequent fire disturbance occurs. Most species are not limited to a specific part of the gradient although many show a maximum abundance at some point along the gradient. Fire and accessibility to the protected area were closely related to variation in species composition along the ordination axis with species like Cynometra alexandri and Uvariopsis congensis occurring at one end of the gradient and Combretum guenzi and Lonchocarpus laxiflorus at the other. The vegetation cover classes identified in the area differed in diversity, density and, especially, basal area. All vegetation cover classes, except open woodland, had indicator species. Diospyros abyssinica, Uvariopsis congensis, Holoptelea grandis and all Celtis species were the indicator species for the forest class, Terminalia velutina and Albizia grandbracteata for closed woodland, Grewia mollis and Combretum mole for very open woodland and Lonchocarpus laxiflorus, Grewia bicolor and Combretum guenzi for the wooded grassland class. Eleven of the species occurred in all cover classes and most of the species that occurred in more than one vegetation cover class showed peak abundance in a specific cover class. Species composition in the study area changes gradually from forest to savannah. Along the gradient, the cover classes are distinguishable in terms of species composition and vegetation structure. These classes are, however, interrelated in species composition. For conservation of the full range of the species within this East African landscape, the mosaic has to be managed as an integrated whole. Burning should be varied over the area with the forest not being burnt at all and the wooded grassland burnt regularly. The different vegetation types that occur between these two extremes should be maintained using a varied fire regim

    Experimental and theoretical study of stable negative index gratings formed at 193 nm

    No full text
    We have demonstrated fast formation (~1500 pulses at ~1 J/cm2/pulse) of fibre gratings with high negative index modulations (~ -3x10-4). These gratings were found to be far more stable than the gratings with positive index modulations formed at the early stage of the grating growth. We have also found that the maximum negative index modulations achieved do not depend on the pulse intensifies, although the inverse of the time taken to reach the negative index modulation maximum varies linearly with the pulse intensities. This prompts us to use a three energy level system to model the photosensitivity in the boron-doped germanosilicate fibre. All the necessary parameters of the model can be determined from a single growth measurement of the average index change and the model's prediction fits well the measured index modulation growth. A complex grating decay process is also observed at elevated temperatures as predicted by the three energy level model. The thermal stability of both positive and negative index gratings in a Boron-co-doped germanosilicate fibre is characterised at fixed temperatures, so that the stability of such grating can be accessed for any writing fluence

    Urban Insights

    No full text
    corecore