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Aggregate Risk Score Based on Markers of Inflammation, Cell
Stress, and Coagulation Is an Independent Predictor of Adverse
Cardiovascular Outcomes

Danny J. Eapen, MD*, Pankaj Manocha, MD*, Riyaz S. Patel, MD*,†, Muhammad Hammadah,
MD*, Emir Veledar, PhD*, Christina Wassel, PhD‡, Ravi A. Nanjundappa, MD, MPH*, Sergey
Sikora, PhD§, Dylan Malayter, BS§, Peter W. F. Wilson, MD*, Laurence Sperling, MD*,
Arshed A. Quyyumi, MD*, and Stephen E. Epstein, MD||

Atlanta, Georgia; Cardiff, United Kingdom; San Diego, California; and Washington, DC

Abstract

Objectives—This study sought to determine an aggregate, pathway-specific risk score for

enhanced prediction of death and myocardial infarction (MI).

Background—Activation of inflammatory, coagulation, and cellular stress pathways contribute

to atherosclerotic plaque rupture. We hypothesized that an aggregate risk score comprised of

biomarkers involved in these different pathways—high-sensitivity C-reactive protein (CRP), fibrin

degradation products (FDP), and heat shock protein 70 (HSP70) levels—would be a powerful

predictor of death and MI.

Methods—Serum levels of CRP, FDP, and HSP70 were measured in 3,415 consecutive patients

with suspected or confirmed coronary artery disease (CAD) undergoing cardiac catheterization.

Survival analyses were performed with models adjusted for established risk factors.

Results—Median follow-up was 2.3 years. Hazard ratios (HRs) for all-cause death and MI based

on cutpoints were as follows: CRP ≥3.0 mg/l, HR: 1.61; HSP70 >0.625 ng/ml, HR; 2.26; and FDP

≥1.0 μg/ml, HR: 1.62 (p < 0.0001 for all). An aggregate biomarker score between 0 and 3 was

calculated based on these cutpoints. Compared with the group with a 0 score, HRs for all-cause

death and MI were 1.83, 3.46, and 4.99 for those with scores of 1, 2, and 3, respectively (p for

each: <0.001). Annual event rates were 16.3% for the 4.2% of patients with a score of 3 compared

with 2.4% in 36.4% of patients with a score of 0. The C statistic and net reclassification improved

(p < 0.0001) with the addition of the biomarker score.
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Conclusions—An aggregate score based on serum levels of CRP, FDP, and HSP70 is a

predictor of future risk of death and MI in patients with suspected or known CAD.

Keywords

biomarker; C-reactive protein; fibrin degradation product; heat shock protein; myocardial
infarction

Stable coronary artery disease (CAD) can lead to severe ischemic symptoms from stenosis-

related coronary blood flow reduction, but plaque rupture leading to myocardial infarction

(MI) and death is its most devastating complication. Although many patients with CAD

never experience clinical plaque rupture, others may experience an early MI. Importantly,

distinct genetic differences distinguish patients with stable CAD versus those who

experience plaque rupture (1). Thus, signaling pathways predisposing to atherosclerosis

probably differ from those contributing to plaque vulnerability. This distinction is likely to

be crucial when considering strategies for identifying patients at risk of MI and death from

plaque rupture.

The Framingham Risk Score and similar scores are widely used to assess absolute risk of

adverse cardiac events in patients without known CAD (2,3); however, they do not reliably

predict risk of plaque rupture (and consequent MI and/or death) in patients with already

established CAD (4,5). Other biomarkers appear to predict such risk, but their associated

hazard ratios (HRs) have been modest (6–8). Our purpose is to develop a robust,

noninvasive, and simple biomarker strategy to identify CAD patients at increased risk of

plaque rupture.

The strategy we explored derived from the concept that activation of multiple pathways,

including inflammatory, stress-related, and coagulation pathways, each contribute to

coronary plaque instability. Elevated levels of high-sensitivity C-reactive protein (CRP)

reflect vascular inflammation and are associated with greater risk for subsequent

cardiovascular disease (CVD) events, but the effects are modest (9,10). Heat shock proteins

(HSPs), including HSP70, are highly conserved intracellular proteins that increase in

response to stress, and may provide evidence of increased cellular stress, and thus, a

predisposition to plaque rupture (11–13). Both fibrinogen and fibrin degradation products

(FDP), end products in the coagulation cascade, have been associated with CAD

development and severity (14,15). Moreover, D-dimer, a degradation product of fibrinogen

and soluble fibrin monomers, has been associated with adverse cardiac events (16,17). We

hypothesized that risk assessment would be markedly enhanced when the 3 biomarkers—

CRP reflecting inflammation; HSP70, associated with increased cellular stress; and FDP,

associated with coagulation cascade activation—are used in aggregate, that is, the risk of

plaque rupture would be greater when biomarkers reflected activation of 2 or 3 pathways

compared with activation of 0 or 1 pathways.
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Methods

Study population

Study participants were recruited as part of the Emory Cardiology Biobank (EMCAB),

consisting of 3,763 consecutive patients enrolled before undergoing elective or emergent

coronary angiograms across 3 Emory healthcare sites, between 2003 and 2009 (details in the

Online Appendix).

Outcomes and follow-up

Record of death was obtained from the Social Security Death Index, and the cause of death

adjudicated from medical records or direct contact was made with the patient’s family

member(s). Cardiac death was defined as death attributable to a cardiovascular cause or

sudden death due to an unknown cause. Follow-up was conducted between 1 and 5 years to

identify cases of MI and revascularization (defined as percutaneous coronary interventions

or coronary artery bypass graft [CABG] surgery). MI and revascularization occurring within

a month of enrollment were not included.

Identification of CAD and severity scoring

All coronary angiograms were scored for luminal narrowing using a modified American

Heart Association/American College of Cardiology classification of the coronaries (18).

Patients were designated as having either angiographically smooth normal coronary arteries,

nonsignificant CAD (visible plaque resulting in <50% luminal stenosis), or significant CAD

(at least 1 major epicardial vessel with ≥50% stenosis). Quantitative angiographic scoring

was performed using the Gensini score, which quantifies CAD severity by a nonlinear points

system for degree of luminal narrowing. The score has prognostic significance (19).

Sample collection

Fasting arterial blood samples for serum were drawn at cardiac catheterization and stored at

−80°C (mean 4.9 years) before analysis by FirstMark, Inc. (San Diego, California) (Online

Appendix). CRP and FDP levels were determined using a sandwich immunoassay. FDP

components included fragments D and E, D-dimer, and additional intermediate cleavage

products. HSP70 was measured with a sandwich enzyme-linked immunosorbent assay

(R&D Systems, Minneapolis, Minnesota) and optimized by FirstMark. Minimum detectable

CRP, FDP, and HSP70 concentrations were 0.1 mg/l, 0.06 μg/ml, and 0.625 ng/ml,

respectively.

Statistical analyses

Continuous variables are presented as mean ± SD, and categorical variables are presented as

proportions (percentages). Student t test, 1-way analysis of variance, and Cochran-Mantel-

Haenszel chi-square test were used as appropriate. Mann-Whitney U or Kruskall-Wallis

nonparametric tests were performed on non-normally distributed variables. The relationship

between biomarkers and outcomes was determined using the Cox proportional hazards

regression in unadjusted models and in models adjusted for established risk factors that

included clinically relevant covariates for CVD outcomes (age at baseline, race, diagnosis of
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hypertension, diabetes, dyslipidemia, use of statins, aspirin, clopidogrel, history of MI, acute

MI at presentation, estimated glomerular filtration rate [eGFR; calculated using the

Modification of Diet in Renal Disease equation], Gensini score, body mass index, left

ventricular ejection fraction [LVEF], history of CABG, and smoking status). The

proportional hazards assumption for Cox models was evaluated by plots of Schoenfeld

residuals and formal testing (a chi-square test calculated as the sum of Schoenfeld residuals).

No significant violations of the assumption were found.

Biomarkers were evaluated both as continuous (natural log transformed) per SD (Online Fig.

1) and as categorical variables based on cutpoints. Penalized B-splines within the Cox

models were also used to assess the functional form of the association between each

biomarker and events (20). We also took into consideration clinically relevant cutpoints

(21). Through these evaluations, cutpoints were determined as 3 mg/l for CRP, 1.0 μg/ml for

FDP, and 0.625 ng/ml for HSP70. The FDP cutpoint corresponded to the fourth quartile.

Analyses were performed on all participants, and in subsets of those with and those without

significant CAD.

The ability of the standard clinical model for predicting adverse events was calculated using

the C statistic from Cox regression models before and after addition of the independently

predictive biomarkers identified both individually and in aggregate (22). Using multivariate

Cox models with the previously noted clinical covariates, continuous net reclassification

improvement (NRI) and integrated discrimination improvement (IDI) metrics were

calculated. Values of p < 0.05 from 2-sided tests were considered to indicate statistical

significance. Further statistical methods are in the Online Appendix.

Results

Baseline characteristics of the 3,415 patients (age 63 ± 11 years) are shown in Table 1.

Relationship between biomarkers and prevalent CAD

Compared with patients with angiographically normal (smooth) coronary arteries, those with

angiographic atherosclerosis had higher levels of HSP70, but FDP and CRP levels were not

significantly different. FDP and HSP70, but not CRP levels, were significantly lower in

patients with nonsignificant versus significant CAD (Online Table 1A). In univariate

analysis, the Gensini CAD severity score was significantly higher in patients with elevated

HSP70 and FDP levels (above their respective cutpoints), but not in those with an elevated

CRP level (Online Tables 1B and 1C). However, none of these differences remained

significant after multivariate adjustment with the aforementioned covariates (Online Table

2).

Clinical and demographic predictors of adverse outcomes

Over a median follow-up of 2.3 years, 283 patients died (8.3%) (150 were cardiac deaths

[4.9%] and 122 had an MI [3.6%]), and 371 had revascularization (10.8%) (Table 1). Using

Cox proportional hazard models that included all the aforementioned covariates, age (HR:

1.02, p = 0.004), diabetes (HR: 1.65, p < 0.0001), ever smoking (HR: 1.38, p = 0.0046),

Gensini score (HR: 1.003, p = 0.006), aspirin use (HR: 0.62, p = 0.001), clopidogrel use
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(HR: 1.51, p = 0.0008), acute MI at presentation (HR: 1.69, p <0.0001), eGFR (HR: 0.99, p

< 0.0001), and LVEF (HR: 0.98, p < 0.0001) were all independent predictors of the

combined outcomes of all-cause death and MI.

Relationships between individual biomarkers and outcomes

Cox proportional hazard regression models, adjusted for aforementioned covariates,

performed for individual biomarkers (natural log transformed) demonstrated that HSP70

(HR: 1.14, p < 0.0001) and CRP (HR: 1.29, p < 0.0001), but not FDP (p = 0.90), were

significantly associated with combined outcomes of death and MI. However, elevated levels

(above cutpoints) of HSP70, FDP, and CRP were each associated with increased risk of all-

cause death, cardiac deaths, the combined endpoint of cardiac or all-cause death and MI, and

the combined endpoint of death, MI, and revascularization (Table 2). All 3 biomarkers

predicted adverse CVD events in subgroups with nonsignificant CAD (<50% stenosis, n =

1,480) and in those with significant CAD (≥50% stenosis, n = 1,935) (Table 2).

Relationship between aggregate biomarker score and outcomes

There were significant but weak correlations between CRP and both HSP70 and FDP, and

between HSP70 and FDP (Online Table 1B). For each patient, a score of 0 or 1 was assigned

based on the presence or absence of elevated levels (above each cutpoint value) of each of

the 3 biomarkers, and an aggregate risk score between 0 and 3 was calculated. Compared

with those with 0 positive biomarkers (n = 1,248), patients with an elevated biomarker score

were more often black, had lower eGFRs and LVEFs, and had a greater frequency of

diabetes and smoking history (Table 1). Among the 4 groups stratified by biomarker

positivity, there were no significant differences between the management strategy (medical

management or revascularization) after index catheterization (Table 1).

In unadjusted analyses, an increasing biomarker score (0 to 3) was associated with increased

risk of all-cause death (p for trend <0.0001), cardiac deaths (p for trend < 0.0001), MI (p for

trend <0.0001), and revascularization (p for trend <0.0001) (Table 1). There was a stepwise

decline in survival free of death (log rank p < 0.0001), death and MI events (log rank p <

0.0001), and the combined endpoint of death, MI, and revascularization (log rank p <

0.0001) with increasing biomarker risk score (Fig. 1).

The Cox proportional hazard regression model adjusting for all the previously described

covariates revealed that for each 1 point increase in risk score, the HR increased 1.87 (p

<0.0001) for all-cause death, 1.79 (p <0.0001) for cardiac death, 1.76 (p <0.0001) for

combined outcomes of death and MI, and 1.49 (p < 0.0001) for death, MI, and

revascularization. HRs of 1, 2, or 3 positive biomarkers compared with 0 are shown in Table

2 and Online Table 3, and the rates of annual CVD events in these aggregate risk score

categories are shown in Figure 2. The score was also associated with individual events of MI

(HR: 1.40, p = 0.0024) and revascularization (HR: 1.26, p = 0.0003) for each 1 point

increase in risk score.
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Discrimination testing

In the whole cohort and in the patients with nonsignificant and with significant CAD, the C

statistic increased significantly for prediction of cardiac deaths (referent C statistic = 0.76,

with added biomarker score, 0.80; p = 0.0002), all-cause death, for combined events of death

and MI, and for death, MI, and revascularization, when all 3 biomarkers were incorporated

into a model with the established risk factors both as a risk score or as categorical variables

(Table 3).

The NRI of the biomarker score for all-cause death and the combined events of death and

MI were 44% and 42%, respectively (Table 4). This corresponded to 14% and 13% rates of

correctly reclassifying events and 30% and 29% rates of correctly reclassifying nonevents,

respectively. The relative IDI for this model was 31% for deaths and 30% for death and MI.

There was improvement in both subgroups with and without significant CAD, with a trend

to greater NRI in those without significant CAD.

Subgroup analyses

Results were similar in the subgroups with either significant or nonsignificant CAD,

including those with normal coronary arteries (Table 2). A score of 3 corresponded to an

18%/year risk of death and MI in the significant CAD group and a 14%/year risk in the

nonsignificant CAD group (Fig. 2). Even after excluding patients with angiographically

normal smooth coronary arteries and those with acute MI on presentation, our results

remained unchanged.

We examined whether there was heterogeneity in the HRs based on age, sex, race, and

presence of individual risk factors, presentation with acute MI, severity of CAD, and eGFR

values. We found that aside from age (p = 0.003), eGFR (p = 0.03), and a diagnosis of

hypertension (p = 0.009), there was no significant interaction (p > 0.05) among these factors

and the predictive capacity of the risk score (Fig. 3).

Discussion

Multiple pathways contribute to the development of atherosclerotic plaque instability and

thereby increase the likelihood that plaques will rupture or erode. We identified 3 circulating

biomarkers (CRP, FDP, and HSP70) that are involved in signaling pathways that likely

influence plaque instability (including inflammation, coagulation, and stress-induced

cellular responses) and examined the hypothesis that each biomarker would predict risk, but

the more biomarkers that were abnormal, the greater the expected risk. Our results support

the validity of our underlying hypothesis. Among patients who underwent coronary

angiography for suspected or established CAD, these 3 biomarkers were significant and

independent predictors of risk of all-cause death, cardiac death, combined outcomes of death

and MI, and death, MI, and revascularization. Importantly, an aggregate score based on the

number of biomarkers that were abnormal was a more powerful predictor of higher risk. In

comparison to patients with a 0 biomarker score, those who had a risk score of 3 (<5% of the

population) experienced over a 5-fold increased risk of all-cause death or MI within 1 year,

with an annual rate of more than 16%. The aggregate risk score significantly improved
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discrimination of future death and MI risk over a standard clinical model, as evidenced by

improvement in the C statistic and NRI.

Current evidence suggests that signaling pathways and their effector molecules involved in

the development of plaque rupture are different from pathways involved in atherogenesis.

Thus, a biomarker that is a predictor of adverse events emanating from the development of

CAD in a population that is initially free of existing CAD is not necessarily a predictor of

events in patients with established, or likely, CAD.

C-reactive protein

Many population-based studies in subjects free of known CAD have found that CRP adds to

risk prediction above standard risk factor assessment (23,24). However, results remain

unclear in patients with CAD. In a meta-analysis of 83 studies in patients with CAD, an

elevated CRP posed an adjusted relative risk of only 1.19 (25). In our high-risk population,

an elevated CRP level increased risk by a higher, but still modest, 1.6-fold.

Heat shock protein 70

Heat shock or stress proteins are highly conserved molecules that fulfill a range of functions,

including cytoprotection and the intracellular assembly, stabilization, folding, and

translocation of oligomeric proteins. Their synthesis can be induced by a range of cellular

insults, including oxidative, hemodynamic, and inflammatory stress, all of which are

associated with the development of CAD (11–13). The relation between cardiovascular

outcomes and circulating HSP70 levels is controversial. In cross-sectional studies, elevated

levels of HSP70 were associated with a lower prevalence of CAD and of carotid intimal

thickness (26,27). These differences are most likely due to the fact that previous studies

investigated risk of atherogenesis, whereas our present investigation focuses on whether the

biomarkers are predictive of subsequent plaque rupture. HSP70 levels increase after an acute

MI, indicating that acute MI can cause an increase in HSP70 (28,29). In our study, 12% of

patients presented with an acute MI; however, our findings did not change after exclusion of

this subset.

Fibrin degradation products

We employed FDP, and not D-dimer, to assess coagulation products. The immunoassay was

designed to detect the full complement of fibrin and FDP (fibrin mono- and oligomers,

fragments -X, -Y, and -E), providing an increased ability to measure coagulation-related

products. Moreover, we found that FDP was not a predictor of adverse events when used as

a continuous variable, but was an independent predictor using the cutoff value. This suggests

that there is threshold value for FDP (>75th percentile of the population mean) above which

it is associated with increased risk, and not with a continuous additive risk with increasing

values.

Previous studies have only examined the value of D-dimer levels with respect to long-term

outcomes. In population-based studies, D-dimer levels predicted adverse cardiovascular

events, but was not always independent of CRP (16,30). Importantly, in the BARI 2D

(Bypass Angioplasty Revascularization Investigation 2 Diabetes) study, the diabetics with
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CAD had higher D-dimer levels that were associated with an increased risk of cardiac events

(31).

Use of multiple biomarkers

Previous studies examining the role of multiple biomarkers in populations free of

established CAD have demonstrated only slight improvement in predictive capacity (using C

statistic) when added to standard clinical models (6–8). In contrast, our study establishes the

value of a multimarker aggregate score in a population with suspected or established CAD, a

group in which conventional risk scores such as the Framingham Risk Score have failed to

identify risk of recurrent cardiac events.

The measured biomarkers were not associated with either the presence or severity of CAD

after adjustment for risk factors, again emphasizing the concept that a biomarker that reflects

plaque instability is not necessarily useful for identifying presence or severity of coronary

plaque. There was minimal heterogeneity in the value of the biomarker risk score based on

clinical variables, risk factors, medication use, and LVEF. Patients presenting with acute MI,

which constituted 12% of our cohort, also had similar risk prediction compared with those

without MI at presentation, and exclusion of these patients did not significantly alter risk

prediction. Approximately two-thirds of our CAD patients underwent revascularization, and

the remaining were treated with medical therapy upon discharge after cardiac

catheterization; however, the rate of revascularization was similar between the various

biomarker risk score groups. Including the revascularization strategy in the Cox regression

model did not alter the overall HRs for the biomarker risk score.

Clinical cardiac events that include death, MI, and revascularization potentially result from

complex kinetic interactions between the magnitude of vascular stenoses and factors that

characterize plaque instability (32). The stenotic severity, reflected by the Gensini score,

drives symptoms and some revascularization procedures, whereas plaque instability leads to

death and MI events. Our results are in agreement with this concept because the Gensini

score and the biomarkers were all independent predictors of outcome.

Study strengths

We enrolled consecutive individuals, including women (35% of total cohort), blacks, those

with acute MI, and patients with a range of LVEFs, reflecting a population that is typical of

those undergoing cardiac catheterization. This is different from many biomarker studies that

are conducted retrospectively on highly select populations enrolled in clinical trials. Assays

were performed at 2 time points by the same laboratory personnel, which minimized

variability. C statistics, NRI, and IDI were calculated using survival models that allowed for

better model discrimination and overall predictive ability.

Study limitations

Limitations of our study include a 1-time measurement of biomarkers that may not reflect

levels at future time points. We have not studied other biomarkers, such as myeloperoxidase,

or myocardial specific markers, such as troponin and brain natriuretic peptide. Our results

need to be further validated and should not be extrapolated to the general population without
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suspected or known CAD. Whether more aggressive management in patients with an

elevated biomarker risk score will modify the score, and whether that will reflect lower risk

remains unknown and needs further investigation.

Although we characterized these biomarkers as representatives of specific biologic

pathways, signaling molecules are often involved in multiple pathways that interact with

each other. For example, HSP70 pathways independent of cellular stress may also contribute

to its biological actions (11–13,33). Our intent, therefore, was to use these 3 biomarkers as

probable reflectors of activation of multiple pathways commonly associated with vulnerable

plaque.

Conclusions

We have demonstrated that a strategy using an aggregate risk score consisting of 3

biomarkers (individually involved in inflammation, coagulation, and stress-induced cellular

responses) identifies patients with suspected or with established CAD who are at increased

risk of experiencing death and other adverse cardiac outcomes in the near and medium term.

Whether treatment aimed at reducing activity of these pathways can positively alter the

disease course remains to be determined and could be addressed in an adequately powered

randomized interventional trial based on biomarker evaluation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IDI integrated discrimination improvement
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Figure 1. Kaplan-Meier Survival
Survival curves for biomarker risk score for (A) death and (B) death and myocardial

infarction (MI). Number of positive biomarkers are listed adjacent to each survival curve.
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Figure 2. Annual Rate of Death and MI
Rate of death and MI grouped by coronary artery disease (CAD) status and by biomarker

score. Percent of patients within each group listed in individual bars. Abbreviation as in

Figure 1.

Eapen et al. Page 13

J Am Coll Cardiol. Author manuscript; available in PMC 2014 July 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Forest Plot of Interaction With Cardiovascular Risk Factors for 1 Unit of Biomarker
Risk Score for Outcomes of Death and MI
AMI = acute myocardial infarction; eGFR = estimated glomerular filtration rate; LVEF =

left ventricular ejection fraction.
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Table 2

Hazard Ratios for All-Cause Death, Combined Endpoints of Death and MI, and Combined Endpoints of

Death, MI, and Revascularization According to Biomarker Levels

Variables
All Participants
HR (95% CI); p Value

Significant CAD
HR (95% CI); p Value

Nonsignificant
CAD HR (95% CI); p Value

All-Cause Death

 All biomarkers in same model

  CRP ≥3.0 mg/l 1.80 (1.36–2.38); <0.0001 1.60 (1.13–2.27); 0.0087 2.36 (1.46–3.81); 0.0005

  HSP70 at ≥0.625 ng/ml 2.02 (1.51–2.70); <0.0001 1.86 (1.28–2.70); 0.0012 2.29 (1.42–3.69); 0.0007

  FDP ≥1.0 μg/ml 1.91 (1.46–2.49); <0.0001 1.60 (1.13–2.27); 0.0087 1.74 (1.11–2.71); 0.0152

 Continuous biomarker risk score 1.87 (1.63–2.15); <0.0001 1.74 (1.45–2.08); <0.0001 2.07 (1.65–2.60); <0.0001

 Categorical biomarker risk score

  1 vs. 0 markers 1.70 (1.16–2.50); 0.0065 1.76 (1.09–2.84); 0.0198 1.62 (0.84–3.13); 0.1520

  2 vs. 0 markers 3.69 (2.52–5.41); <0.0001 3.26 (2.01–5.27); <0.0001 4.58 (2.39–8.80); <0.0001

  3 vs. 0 markers 5.79 (3.63–9.22); <0.0001 4.89 (2.64–9.06); <0.0001 7.07 (3.33–15.03); <0.0001

Cardiac Death

 All biomarkers in same model

  CRP ≥3.0 mg/l 1.76 (1.19–2.60); 0.0049 1.59 (0.98–2.56); 0.0587 2.37 (1.17–4.81); 0.0164

  HSP70 ≥0.625 ng/ml 1.69 (1.13–2.53); 0.0102 1.46 (0.88–2.41); 0.1436 2.17 (1.07–4.40); 0.0327

  FDP ≥1.0 μg/ml 2.00 (1.38–2.89); 0.0003 2.06 (1.29–3.27); 0.0023 1.69 (0.89–3.21); 0.1072

 Continuous biomarker risk score 1.79 (1.47–2.17); <0.0001 1.68 (1.32–2.14); <0.0001 1.97 (1.41–2.75); <0.0001

 Categorical biomarker risk score

  1 vs. 0 markers 1.53 (0.90–2.58); 0.1155 1.54 (0.80–2.97); 0.1939 1.58 (0.64–3.90); 0.3255

  2 vs. 0 markers 3.02 (1.77–5.15); <0.0001 2.94 (1.52–5.66); 0.0013 3.18 (1.24–8.17); 0.0163

  3 vs. 0 markers 5.24 (2.79–9.86); <0.0001 4.26 (1.88–9.66); 0.0005 7.36 (2.56–21.17); 0.0002

All-Cause Death or MI

 All biomarkers in same model

  CRP ≥3.0 mg/l 1.61 (1.28–2.03); <0.0001 1.55 (1.17–2.06); 0.0023 1.93 (1.27–2.93); 0.0019

  HSP70 ≥0.625 ng/ml 2.26 (1.77–2.90); <0.0001 2.32 (1.70–3.15); <0.0001 2.18 (1.42–3.33); 0.0003

  FDP ≥1.0 μg/ml 1.62 (1.28–2.04); <0.0001 1.50 (1.12–2.00); 0.0067 1.77 (1.18–2.66); 0.0059

 Continuous biomarker risk score 1.76 (1.56–1.98); <0.0001 1.70 (1.46–1.97); <0.0001 1.92 (1.57–2.36); <0.0001

 Categorical biomarker risk score

  1 vs. 0 markers 1.83 (1.33–2.51); 0.0002 2.03 (1.38–2.99); 0.0003 1.50 (0.86–2.61); 0.15

  2 vs. 0 markers 3.46 (2.51–4.78); <0.0001 3.31 (2.22–4.92); <0.0001 3.93 (2.25–6.87); <0.0001

  3 vs. 0 markers 4.99 (3.31–7.53); <0.0001 4.80 (2.81–8.21); <0.0001 5.62 (2.86–11.06); <0.0001

All-Cause Death, MI, or Revascularization

 All biomarkers in same model

  CRP ≥3.0 mg/l 1.26 (1.06–1.49); 0.0084 1.13 (0.93–1.38); 0.22 1.86 (1.32–2.60); 0.0003

  HSP70 ≥0.625 ng/ml 1.97 (1.64–2.36); <0.0001 2.01 (1.62–2.50); <0.0001 1.95 (1.37–2.78); 0.0002

  FDP ≥1.0 μg/ml 1.47 (1.22–1.76); <0.0001 1.32 (1.05–1.65); 0.0172 1.76 (1.26–2.46); 0.0010

 Continuous biomarker risk score 1.49 (1.36–1.63); <0.0001 1.39 (1.25–1.55); <0.0001 1.84 (1.55–2.18); <0.0001
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Variables
All Participants
HR (95% CI); p Value

Significant CAD
HR (95% CI); p Value

Nonsignificant
CAD HR (95% CI); p Value

 Categorical biomarker risk score

  1 vs. 0 markers 1.59 (1.29–1.97); <0.0001 1.60 (1.26–2.04); 0.0001 1.69 (1.10–2.59); 0.0177

  2 vs. 0 markers 2.44 (1.94–3.06); <0.0001 2.11 (1.62–2.75); <0.0001 3.68 (2.33–5.79); <0.0001

  3 vs. 0 markers 3.05 (2.19–4.23); <0.0001 2.48 (1.63–3.77); <0.0001 5.41 (3.04–9.63); <0.0001

Values are hazard ratios (HRs) and 95% confidence intervals (CI).

Abbreviations as in Table 1.
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Table 3

C-Statistic for Cox Regression Models Predicting Major Adverse Cardiovascular Events

Variables
All Participants
C Statistic; p Value

Significant CAD
C Statistic; p Value

Nonsignificant CAD
C statistic; p Value

All-cause death

 Established risk factors 0.722; referent 0.734; referent 0.755; referent

 Established risk factors + score 0.784; <0.0001 0.783; <0.0001 0.815; 0.001

All-cause death and MI

 Established risk factors 0.694; referent 0.703; referent 0.708; referent

 Established risk factors + score 0.750; <0.0001 0.744; <0.0001 0.773; 0.001

All-cause death, MI, and Revascularization

 Established risk factors 0.677; referent 0.653; referent 0.691; referent

 Established risk factors + score 0.707; <0.0001 0.671; 0.009 0.751; 0.0006

Abbreviations as in Table 1.
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Table 4

NRI and IDI for Death and MI Using Biomarker Score

Variables All Participants Significant CAD Nonsignificant CAD

Events correctly reclassified 13% 6% 16%

Nonevents correctly reclassified 29% 26% 29%

NRI 42% 33% 45%

IDI 0.03 0.03 0.03

IDI = integrated discrimination improvement; NRI = net reclassification improvement; other abbreviation as in Table 1.
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