125 research outputs found
Structure, metamorphism, and geochronology of the Singis-Nikkaluokta region, Arctic Scandinavian Caledonides
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1990.1 folded map in pocket.Includes bibliographical references (leaves 190-196).by Laurence M. Page.Ph.D
A toolkit for live annotation of opera performance: Experiences capturing Wagner's Ring Cycle
[TODO] Add abstract here
A novel method of using accelerometry for upper limb FES control.
This paper reports on a novel approach to using a 3-axis accelerometer to capture body segment angle for upper limb functional electrical stimulation (FES) control. The approach calculates the angle between the accelerometer x -axis and the gravity vector, while avoiding poor sensitivity at certain angles and minimizing errors when true acceleration is relatively large in comparison to gravity. This approach was incorporated into a state-machine controller which is used for the real-time control of FES during up- per limb functional task performance. An experimental approach was used to validate the new method. Two participants with different upper limb impairments resulting from a stroke carried out four different FES-assisted tasks. Comparisons were made between angle calculated from arm-mounted accelerometer data using our algorithm and angle calculated from limb-mounted reflective marker data. After removal of coordinate misalignment error, mean error across tasks and subjects ranged between 1.4 and 2.9 Β°. The approach shows promise for use in the control of upper limb FES and other human movement applications where true acceleration is relatively small in comparison with gravity
The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the βΌ120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
Can the Universe Create Itself?
The question of first-cause has troubled philosophers and cosmologists alike.
Now that it is apparent that our universe began in a Big Bang explosion, the
question of what happened before the Big Bang arises. Inflation seems like a
very promising answer, but as Borde and Vilenkin have shown, the inflationary
state preceding the Big Bang must have had a beginning also. Ultimately, the
difficult question seems to be how to make something out of nothing. This paper
explores the idea that this is the wrong question --- that that is not how the
Universe got here. Instead, we explore the idea of whether there is anything in
the laws of physics that would prevent the Universe from creating itself.
Because spacetimes can be curved and multiply connected, general relativity
allows for the possibility of closed timelike curves (CTCs). Thus, tracing
backwards in time through the original inflationary state we may eventually
encounter a region of CTCs giving no first-cause. This region of CTCs, may well
be over by now (being bounded toward the future by a Cauchy horizon). We
illustrate that such models --- with CTCs --- are not necessarily inconsistent
by demonstrating self-consistent vacuums for Misner space and a multiply
connected de Sitter space in which the renormalized energy-momentum tensor does
not diverge as one approaches the Cauchy horizon and solves Einstein's
equations. We show such a Universe can be classically stable and
self-consistent if and only if the potentials are retarded, giving a natural
explanation of the arrow of time. Some specific scenarios (out of many possible
ones) for this type of model are described. For example: an inflationary
universe gives rise to baby universes, one of which turns out to be itself.
Interestingly, the laws of physics may allow the Universe to be its own mother.Comment: 48 pages, 8 figure
Mammalian Frataxin: An Essential Function for Cellular Viability through an Interaction with a Preformed ISCU/NFS1/ISD11 Iron-Sulfur Assembly Complex
Frataxin, the mitochondrial protein deficient in Friedreich ataxia, a rare autosomal recessive neurodegenerative disorder, is thought to be involved in multiple iron-dependent mitochondrial pathways. In particular, frataxin plays an important role in the formation of iron-sulfur (Fe-S) clusters biogenesis.. Fe-S cluster biosynthesis
The association of mammographic density with ductal carcinoma in situ of the breast: the Multiethnic Cohort
INTRODUCTION: It is well established that women with high mammographic density are at greater risk for breast cancer than are women with low breast density. However, little research has been done on mammographic density and ductal carcinoma in situ (DCIS) of the breast, which is thought to be a precursor lesion to some invasive breast cancers. METHOD: We conducted a nested case-control study within the Multiethnic Cohort, and compared the mammographic densities of 482 patients with invasive breast cancer and 119 with breast DCIS cases versus those of 667 cancer-free control subjects. A reader blinded to disease status performed computer-assisted density assessment. For women with more than one mammogram, mean density values were computed. Polytomous logistic regression models were used to compute adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for two measurements of mammographic density: percentage density and dense area. RESULTS: Mammographic density was associated with invasive breast cancer and breast DCIS. For the highest category of percentage breast density (β₯50%) as compared with the lowest (<10%), the OR was 3.58 (95% CI 2.26β5.66) for invasive breast cancer and 2.86 (1.38β5.94) for breast DCIS. Similarly, for the highest category of dense area (β₯45 cm(2)) as compared with the lowest (<15 cm(2)), the OR was 2.92 (95% CI 2.01β4.25) for invasive breast cancer and 2.59 (1.39β4.82) for breast DCIS. Trend tests were significant for invasive breast cancer (P for trend < 0.0001) and breast DCIS (P for trend < 0.001) for both percentage density and dense area. CONCLUSION: The similar strength of association for mammographic density with breast DCIS and invasive breast cancer supports the hypothesis that both diseases may have a common etiology
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons
The inhibitory GABAergic system has been implicated in multiple neuropsychiatric diseases such as schizophrenia and autism. The Dlx homeobox transcription factor family is essential for development and function of GABAergic interneurons. Mice lacking the Dlx1 gene have postnatal subtype-specific loss of interneurons and reduced IPSCs in their cortex and hippocampus. To ascertain consequences of these changes in the GABAergic system, we performed a battery of behavioral assays on the Dlx1 mutant mice, including zero maze, open field, locomotor activity, food intake, rotarod, tail suspension, fear conditioning assays (context and trace), prepulse inhibition, and working memory related tasks (spontaneous alteration task and spatial working memory task). Dlx1 mutant mice displayed elevated activity levels in open field, locomotor activity, and tail suspension tests. These mice also showed deficits in contextual and trace fear conditioning, and possibly in prepulse inhibition. Their learning deficits were not global, as the mutant mice did not differ from the wild-type controls in tests of working memory. Our findings demonstrate a critical role for the Dlx1 gene, and likely the subclasses of interneurons that are affected by the lack of this gene, in behavioral inhibition and associative fear learning. These observations support the involvement of particular components of the GABAergic system in specific behavioral phenotypes related to complex neuropsychiatric diseases
- β¦