22 research outputs found

    Heteronuclear bimetallic complexes with 3d and 4f elements

    Get PDF
    Three heteronuclear bimetallic complexes [Cu(MeOH)(L)Ln(NO3)3] ( 1-Ce ; Ln = Ce, 1-Pr ; Ln = Pr, and 1-Nd ; Ln = Nd) were prepared using H2L (1,3-bis[(3-methoxysalicylidene)amino]-2,2-dimethylpropane) in methanol, affording the complexes as green crystalline materials. These can be prepared in a one-pot synthesis from 2,2-dimethylpropan-1,3-diamine, o-vanillin, copper(II) nitrate, and Ln(III) nitrate (Ln = Ce, Pr, Nd). X-ray crystallography, high-resolution mass spectrometry, and UV-vis spectroscopy were used to characterize the bimetallic complexes. All three complexes showed the copper center adopting a five-coordinate square pyramidal geometry and the lanthanoid cation adopting a ten-coordinate geometry.Publisher PDFPeer reviewe

    Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy

    Get PDF
    Approximately 30% of epilepsy patients do not respond to antiepileptic drugs, representing an unmet medical need. There is evidence that neuroinflammation plays a pathogenic role in drug-resistant epilepsy. The high-mobility group box 1 (HMGB1)/TLR4 axis is a key initiator of neuroinflammation following epileptogenic injuries, and its activation contributes to seizure generation in animal models. However, further work is required to understand the role of HMGB1 and its isoforms in epileptogenesis and drug resistance. Using a combination of animal models and sera from clinically well-characterized patients, we have demonstrated that there are dynamic changes in HMGB1 isoforms in the brain and blood of animals undergoing epileptogenesis. The pathologic disulfide HMGB1 isoform progressively increased in blood before epilepsy onset and prospectively identified animals that developed the disease. Consistent with animal data, we observed early expression of disulfide HMGB1 in patients with newly diagnosed epilepsy, and its persistence was associated with subsequent seizures. In contrast with patients with well-controlled epilepsy, patients with chronic, drug-refractory epilepsy persistently expressed the acetylated, disulfide HMGB1 isoforms. Moreover, treatment of animals with antiinflammatory drugs during epileptogenesis prevented both disease progression and blood increase in HMGB1 isoforms. Our data suggest that HMGB1 isoforms are mechanistic biomarkers for epileptogenesis and drug-resistant epilepsy in humans, necessitating evaluation in larger-scale prospective studies

    Microbial community changes during sustained Cr(VI) reduction at the 100H site in Hanford, WA

    Full text link
    Hexavalent Chromium is a widespread contaminant found in soil, sediment, and groundwater. In order to stimulate microbially-mediated reduction of Cr(VI), a poly-lactate compound (HRC) was injected into the Chromium-contaminated aquifer at the Hanford (WA) 100H site in 2004. Cr(VI) concentrations rapidly declined to below the detection limit and remained so for more than three years after injection. Based on the results of the bacterial community composition using high-density DNA 16S rRNA gene microarrays, we observed the community to transition through denitrifying, ironreducing and sulfate-reducing populations. As a result, we specifically focused isolation efforts on three bacterial species that were significant components of the community. Positive enrichments in defined anaerobic media resulted in the isolation of an iron-reducing Geobacter metallireducens-like isolate, a sulfate-reducing Desulfovibrio vukgaris-like strain and a nitrate-reducing Pseudomonas stutzeri-like isolate among several others. All of these isolates were capable of reducing Cr(VI) anoxically and have been submitted for genome sequencing to JGI. To further characterize the microbial, and geochemical mechanisms associated with in situ Cr(VI) reduction at the site, additional HRC was injected in 2008. The goal was to restimulate the indigenous microbial community and to regenerate the reducing conditions necessary for continued Cr(VI) bio-immobilization in the groundwater. Analysis of the microbial populations post-injection revealed that they recovered to a similar density as after the first injection in 2004. In this study, we present the results from our investigation into microbially-mediated Cr(VI) reduction at Hanford, and a comparison of the microbial community development following two HRC injections four years apart

    Post-Operative Functional Outcomes in Early Age Onset Rectal Cancer

    Get PDF
    Background: Impairment of bowel, urogenital and fertility-related function in patients treated for rectal cancer is common. While the rate of rectal cancer in the young (<50 years) is rising, there is little data on functional outcomes in this group. Methods: The REACCT international collaborative database was reviewed and data on eligible patients analysed. Inclusion criteria comprised patients with a histologically confirmed rectal cancer, <50 years of age at time of diagnosis and with documented follow-up including functional outcomes. Results: A total of 1428 (n=1428) patients met the eligibility criteria and were included in the final analysis. Metastatic disease was present at diagnosis in 13%. Of these, 40% received neoadjuvant therapy and 50% adjuvant chemotherapy. The incidence of post-operative major morbidity was 10%. A defunctioning stoma was placed for 621 patients (43%); 534 of these proceeded to elective restoration of bowel continuity. The median follow-up time was 42 months. Of this cohort, a total of 415 (29%) reported persistent impairment of functional outcomes, the most frequent of which was bowel dysfunction (16%), followed by bladder dysfunction (7%), sexual dysfunction (4.5%) and infertility (1%). Conclusion: A substantial proportion of patients with early-onset rectal cancer who undergo surgery report persistent impairment of functional status. Patients should be involved in the discussion regarding their treatment options and potential impact on quality of life. Functional outcomes should be routinely recorded as part of follow up alongside oncological parameters

    CCDC 2224393 - 2224395: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    Thirty years of research on crown-of-thorns starfish (1986-2016): Scientific advances and emerging opportunities

    No full text
    © 2017 by the authors. Research on the coral-eating crown-of-thorns starfish (CoTS) has waxed and waned over the last few decades, mostly in response to population outbreaks at specific locations. This review considers advances in our understanding of the biology and ecology of CoTS based on the resurgence of research interest, which culminated in this current special issue on the Biology, Ecology and Management of Crown-of-Thorns Starfish. More specifically, this review considers progress in addressing 41 specific research questions posed in a seminal review by P. Moran 30 years ago, as well as exploring new directions for CoTS research. Despite the plethora of research on CoTS ( \u3e 1200 research articles), there are persistent knowledge gaps that constrain effective management of outbreaks. Although directly addressing some of these questions will be extremely difficult, there have been considerable advances in understanding the biology of CoTS, if not the proximate and ultimate cause(s) of outbreaks. Moving forward, researchers need to embrace new technologies and opportunities to advance our understanding of CoTS biology and behavior, focusing on key questions that will improve effectiveness of management in reducing the frequency and likelihood of outbreaks, if not preventing them altogether

    Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption

    No full text
    WOS:000668872900002International audienceSwitchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, 'Dust Bowl' remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands
    corecore