12 research outputs found

    One Plant Actin Isovariant, ACT7, Is Induced by Auxin and Required for Normal Callus Formation

    No full text
    During plant growth and development, the phytohormone auxin induces a wide array of changes that include cell division, cell expansion, cell differentiation, and organ initiation. It has been suggested that the actin cytoskeleton plays an active role in the elaboration of these responses by directing specific changes in cell morphology and cytoarchitecture. Here we demonstrate that the promoter and the protein product of one of the Arabidopsis vegetative actin genes, ACT7, are rapidly and strongly induced in response to exogenous auxin in the cultured tissues of Arabidopsis. Homozygous act7-1 mutant plants were slow to produce callus tissue in response to hormones, and the mutant callus contained at least two to three times lower levels of ACT7 protein than did the wild-type callus. On the other hand, a null mutation in ACT2, another vegetative actin gene, did not significantly affect callus formation from leaf or root tissue. Complementation of the act7-1 mutants with the ACT7 genomic sequence restored their ability to produce callus at rates similar to those of wild-type plants, confirming that the ACT7 gene is required for callus formation. Immunolabeling of callus tissue with actin subclass-specific antibodies revealed that the predominant ACT7 is coexpressed with the other actin proteins. We suggest that the coexpression, and probably the copolymerization, of the abundant ACT7 with the other actin isovariants in cultured cells may facilitate isovariant dynamics well suited for cellular responses to external stimuli such as hormones

    Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana

    No full text
    Vitamin E is an essential nutrient for humans and is obtained primarily from food, especially oil, derived from the seed of plants. Genes encoding the committed steps in vitamin E synthesis in plants (VTE, loci 1–5) have been isolated and used for tocopherol pathway engineering with various degrees of success. As a complement to such approaches we have used quantitative trait loci analysis with two sets of Arabidopsis thaliana recombinant inbred lines and have identified 14 QVE (quantitative vitamin E) loci affecting tocopherol content and composition in seeds. Five QVE intervals contain VTE loci that are likely QVE gene candidates. Nine QVE intervals do not contain VTE loci and therefore identify novel loci affecting seed tocopherol content and composition. Several near-isogenic lines containing introgressions of the accession with increased vitamin E levels were shown to confer significantly elevated tocopherol levels compared with the recurrent parent. Fine-mapping has narrowed QVE7 (a γ-tocopherol quantitative trait loci) to an 8.5-kb interval encompassing two genes. Understanding the basis of the QVE loci in Arabidopsis promises to provide insight into the regulation and/or metabolism of vitamin E in plants and has clear ramifications for improving the nutritional content of crops through marker-assisted selection and metabolic engineering

    Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies

    No full text
    Anaplastic thyroid carcinoma (ATC) is a rare malignancy, accounting for 1-2% of all thyroid cancers. Although rare, ATC accounts for the majority of deaths from thyroid carcinoma. ATC often originates in a pre-existing thyroid cancer lesion, as suggested by the simultaneous presence of areas of differentiated or poorly differentiated thyroid carcinoma. ATC is characterized by the accumulation of several oncogenic alterations, and studies have shown that an increased number of oncogenic alterations equates to an increased level of dedifferentiation and aggressiveness. The clinical management of ATC requires a multidisciplinary approach; according to recent American Thyroid Association guidelines, surgery, radiotherapy and/or chemotherapy should be considered. In addition to conventional therapies, novel molecular targeted therapies are the most promising emerging treatment modalities. These drugs are often multiple receptor tyrosine kinase inhibitors, several of which have been tested in clinical trials with encouraging results so far. Accordingly, clinical trials are ongoing to evaluate the safety, efficacy and effectiveness of these new agents. This Review describes the updated clinical and pathological features of ATC and provides insight into the molecular biology of this disease. The most recent literature regarding conventional, newly available and future therapies for ATC is also discussed

    Minimally invasive follicular thyroid cancer (MIFTC)—a consensus report of the European Society of Endocrine Surgeons (ESES)

    No full text

    Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies

    No full text

    Management and 1-Year Outcomes of Patients With Newly Diagnosed Atrial Fibrillation and Chronic Kidney Disease: Results From the Prospective GARFIELD-AF Registry

    No full text
    Background-Using data from the GARFIELD-AF (Global Anticoagulant Registry in the FIELD-Atrial Fibrillation), we evaluated the impact of chronic kidney disease (CKD) stage on clinical outcomes in patients with newly diagnosed atrial fibrillation (AF)
    corecore