42 research outputs found

    Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy

    Get PDF
    Mammalian target of rapamycin (mTOR), a central regulator of growth and metabolism, has tissue-specific functions depending on whether it is part of mTOR complex 1 (mTORC1) or mTORC2. We have previously shown that mTORC1 is required for adaptive cardiac hypertrophy and maintenance of function under basal and pressure-overload conditions. In the present study, we aimed to identify functions of mTORC2 in the heart.; Using tamoxifen-inducible cardiomyocyte-specific gene deletion, we generated mice deficient for cardiac rapamycin-insensitive companion of mTOR (rictor), an essential and specific component of mTORC2. Under basal conditions, rictor deficiency did not affect cardiac growth and function in young mice and also had no effects in adult mice. However, transverse aortic constriction caused dysfunction in the rictor-deficient hearts, whereas function was maintained in controls after 1 week of pressure overload. Adaptive increases in cardiac weight and cardiomyocyte cross-sectional area, fibrosis, and hypertrophic and metabolic gene expression were not different between the rictor-deficient and control mice. In control mice, maintained function was associated with increased protein levels of rictor, protein kinase C (PKC)βII, and PKCδ, whereas rictor ablation abolished these increases. Rictor deletion also significantly decreased PKCε at baseline and after pressure overload. Our data suggest that reduced PKCε and the inability to increase PKCβII and PKCδ abundance are, in accordance with their known function, responsible for decreased contractile performance of the rictor-deficient hearts.; Our study demonstrates that mTORC2 is implicated in maintaining contractile function of the pressure-overloaded male mouse heart

    Disruption of a GATA4/Ankrd1 Signaling Axis in Cardiomyocytes Leads to Sarcomere Disarray: Implications for Anthracycline Cardiomyopathy

    Get PDF
    Doxorubicin (Adriamycin) is an effective anti-cancer drug, but its clinical usage is limited by a dose-dependent cardiotoxicity characterized by widespread sarcomere disarray and loss of myofilaments. Cardiac ankyrin repeat protein (CARP, ANKRD1) is a transcriptional regulatory protein that is extremely susceptible to doxorubicin; however, the mechanism(s) of doxorubicin-induced CARP depletion and its specific role in cardiomyocytes have not been completely defined. We report that doxorubicin treatment in cardiomyocytes resulted in inhibition of CARP transcription, depletion of CARP protein levels, inhibition of myofilament gene transcription, and marked sarcomere disarray. Knockdown of CARP with small interfering RNA (siRNA) similarly inhibited myofilament gene transcription and disrupted cardiomyocyte sarcomere structure. Adenoviral overexpression of CARP, however, was unable to rescue the doxorubicin-induced sarcomere disarray phenotype. Doxorubicin also induced depletion of the cardiac transcription factor GATA4 in cardiomyocytes. CARP expression is regulated in part by GATA4, prompting us to examine the relationship between GATA4 and CARP in cardiomyocytes. We show in co-transfection experiments that GATA4 operates upstream of CARP by activating the proximal CARP promoter. GATA4-siRNA knockdown in cardiomyocytes inhibited CARP expression and myofilament gene transcription, and induced extensive sarcomere disarray. Adenoviral overexpression of GATA4 (AdV-GATA4) in cardiomyocytes prior to doxorubicin exposure maintained GATA4 levels, modestly restored CARP levels, and attenuated sarcomere disarray. Interestingly, siRNA-mediated depletion of CARP completely abolished the Adv-GATA4 rescue of the doxorubicin-induced sarcomere phenotype. These data demonstrate co-dependent roles for GATA4 and CARP in regulating sarcomere gene expression and maintaining sarcomeric organization in cardiomyocytes in culture. The data further suggests that concurrent depletion of GATA4 and CARP in cardiomyocytes by doxorubicin contributes in large part to myofibrillar disarray and the overall pathophysiology of anthracycline cardiomyopathy

    ErbB/integrin signaling interactions in regulation of myocardial cell-cell and cell-matrix interactions.

    Get PDF
    Neuregulin (Nrg)/ErbB and integrin signaling pathways are critical for the normal function of the embryonic and adult heart. Both systems activate several downstream signaling pathways, with different physiological outputs: cell survival, fibrosis, excitation-contraction coupling, myofilament structure, cell-cell and cell-matrix interaction. Activation of ErbB2 by Nrg1β in cardiomycytes or its overexpression in cancer cells induces phosphorylation of FAK (Focal Adhesion Kinase) at specific sites with modulation of survival, invasion and cell-cell contacts. FAK is also a critical mediator of integrin receptors, converting extracellular matrix alterations into intracellular signaling. Systemic FAK deletion is lethal and is associated with left ventricular non-compaction whereas cardiac restriction in adult hearts is well tolerated. Nevertheless, these hearts are more susceptible to stress conditions like trans-aortic constriction, hypertrophy, and ischemic injury. As FAK is both downstream and specifically activated by integrins and Nrg-1β, here we will explore the role of FAK in the heart as a protective factor and as possible mediator of the crosstalk between the ErbB and Integrin receptors. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction

    ErbB/integrin signaling interactions in regulation of myocardial cell-cell and cell-matrix interactions.

    No full text
    Neuregulin (Nrg)/ErbB and integrin signaling pathways are critical for the normal function of the embryonic and adult heart. Both systems activate several downstream signaling pathways, with different physiological outputs: cell survival, fibrosis, excitation-contraction coupling, myofilament structure, cell-cell and cell-matrix interaction. Activation of ErbB2 by Nrg1β in cardiomycytes or its overexpression in cancer cells induces phosphorylation of FAK (Focal Adhesion Kinase) at specific sites with modulation of survival, invasion and cell-cell contacts. FAK is also a critical mediator of integrin receptors, converting extracellular matrix alterations into intracellular signaling. Systemic FAK deletion is lethal and is associated with left ventricular non-compaction whereas cardiac restriction in adult hearts is well tolerated. Nevertheless, these hearts are more susceptible to stress conditions like trans-aortic constriction, hypertrophy, and ischemic injury. As FAK is both downstream and specifically activated by integrins and Nrg-1β, here we will explore the role of FAK in the heart as a protective factor and as possible mediator of the crosstalk between the ErbB and Integrin receptors. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction

    Digital Transformation in the Pharmaceutical Sector: An Italian Overview

    No full text
    Today industry is experiencing its fourth industrial revolution. “Industry 4.0” is based on Cloud systems and the Internet of Things, among others. This study examines the technological innovations applied to the pharmaceutical industry to analyze which organizational changes they bring with them. These new technologies aimed to improve the inter and intra-organizational processes lowering the time and the costs associated. The case of an Italian consortium shows that pharmaceutical industries favor the requalification of current personnel and adapt the organizational structure to accommodate better and exploit these new technologies. These changes affect the whole ecosystem, encouraging aggregation and partnerships between different players and outsourcing those processes that would require too much time and high costs to be internally develope

    Emerging Anticancer Therapeutic Targets and the Cardiovascular System

    No full text

    Inhibition of ErbB2/neuregulin signaling augments paclitaxel-induced cardiotoxicity in adult ventricular myocytes

    No full text
    Paclitaxel (Taxol) has been successfully combined with the monoclonal antibody trastuzumab (Herceptin) in the treatment of ErbB2 overexpressing cancers. However, this combination therapy showed an unexpected synergistic increase in cardiac dysfunction. We have studied the mechanisms of paclitaxel/anti-ErbB2 cardiotoxicity in adult rat ventricular myocytes (ARVM). Myofibrillar organization was assessed by immunofluorescence microscopy and cell viability was tested by the TUNEL-, LDH- and MTT-assay. Oxidative stress was measured by DCF-fluorescence and myocyte contractile function by video edge-detection and fura-2 fluorescence. Treatment of ARVM with paclitaxel or antibodies to ErbB2 caused a significant increase in myofilament degradation, similarly as observed with an inhibitor of MAPK-signaling, but not apoptosis, necrosis or changes in mitochondrial activity. Paclitaxel-treatment and anti-ErbB2 reduced Erk1/2 phosphorylation. Paclitaxel increased diastolic calcium, shortened relaxation time and reduced fractional shortening in combination with anti-ErbB2. A minor increase in oxidative stress by paclitaxel or anti-ErbB2 was found. We conclude, that concomitant inhibition of ErbB2 receptors and paclitaxel treatment has an additive worsening effect on adult cardiomyocytes, mainly discernible in changes of myofibrillar structure and function, but in the absence of cell death. A potential mechanism is the modulation of the MAPK/Erk1/2 signaling by both drugs

    Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes

    No full text
    Treatment of metastatic breast cancer with doxorubicin (Doxo) in combination with trastuzumab, an antibody targeting the ErbB2 receptor, results in an increased incidence of heart failure. Doxo therapy induces reactive oxygen species (ROS) and alterations of calcium homeostasis. Therefore, we hypothesized that neuregulin-1 beta (NRG), a ligand of the cardiac ErbB receptors, reduces Doxo-induced alterations of EC coupling by triggering antioxidant mechanisms. Adult rat ventricular cardiomyocytes (ARVM) were isolated and treated for 18-48 h. SERCA protein was analyzed by Western blot, EC coupling parameters by fura-2 and video edge detection, gene expression by RT-PCR, and ROS by DCF-fluorescence microscopy. At clinically relevant doses Doxo reduced cardiomyocytes contractility, SERCA protein and SR calcium content. NRG, similarly as the antioxidant N-acetylcystein (NAC), did not affect EC coupling alone, but protected against Doxo-induced damage. NRG and Doxo showed an opposite modulation of glutathione reductase gene expression. NRG, similarly as NAC, reduced peroxide- or Doxo-induced oxidative stress. Specific inhibitors showed, that the antioxidant action of NRG depended on signaling via the ErbB2 receptor and on the Akt- and not on the MAPK-pathway. Therefore, NRG attenuates Doxo-induced alterations of EC coupling and reduces oxidative stress in ARVM. Inhibition of the ErbB2/NRG signaling pathway by trastuzumab in patients concomitantly treated with Doxo might prevent beneficial effects of NRG in the myocardium

    Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes

    No full text
    Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction
    corecore