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Neuregulin (Nrg)/ErbB and integrin signaling pathways are critical for the normal function of the embryonic
and adult heart. Both systems activate several downstream signaling pathways, with different physiological
outputs: cell survival, fibrosis, excitation–contraction coupling, myofilament structure, cell–cell and cell–
matrix interaction. Activation of ErbB2 by Nrg1β in cardiomycytes or its overexpression in cancer cells induces
phosphorylation of FAK (Focal Adhesion Kinase) at specific sites with modulation of survival, invasion and
cell–cell contacts. FAK is also a critical mediator of integrin receptors, converting extracellular matrix
alterations into intracellular signaling. Systemic FAK deletion is lethal and is associated with left ventricular
non-compaction whereas cardiac restriction in adult hearts is well tolerated. Nevertheless, these hearts are
more susceptible to stress conditions like trans-aortic constriction, hypertrophy, and ischemic injury. As FAK is
both downstream and specifically activated by integrins and Nrg-1β, here we will explore the role of FAK in
the heart as a protective factor and as possiblemediator of the crosstalk between the ErbB and Integrin receptors.
This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation,
Metabolism and Contraction.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In 1995 three articles were contemporaneously published in
Nature describing the effect of systemic deletion of Neuregulin(Nrg)-1,
epidermal growth factor receptors ErbB2 and ErbB4 in mice. These
studies demonstrated that Nrg/ErbB signaling is needed for the correct
development of heart trabeculae, a structure responsible for the normal
function of the embryonic heart [1–3]. Since then our knowledge has
greatly increased and it is now clear that this signaling system is also
active in the adult heart and is critical for its maintenance under
stressed conditions. Specific deletion of ErbB2 [4] and ErbB4 [5] leads
to spontaneous dilated cardiomyopathy associated with higher suscepti-
bility to aortic banding. Both cardiac and cancer research have connected
directly and indirectly Nrg-1β/ErbB to several signaling pathway, such as
Phosphatidylinositol 3-Kinase (PI3K)/Akt, Mitogen-Activated Protein
Kinase (MAPK)/ Extracellular signal-Regulated Kinase (Erk) 1/2, and the
non-receptor tyrosine kinase Src/Focal Adhesion Kinase (FAK), and
demonstrated its involvement in a wide variety of physiological outputs,
including cardiac cell survival, migration, angiogenesis, cytoskeleton, and
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excitation–contraction coupling( for a detailed review on these pathways
in the heart see ref. [6]).

The primary role of integrins is to link the extracellular matrix
(ECM) to the intracellular signaling. Deletion of β1 subunit, the most
common in the heart, suggests that ECM is involved in the differentia-
tion of cardiomyocytes during heart development [7]. Integrins are
also critical for the maintenance of the adult heart both under normal
and pathological conditions, as their deletion results in a spontaneous
increase in fibrosis as well as induction of heart failure [8]. The
non-receptor tyrosine kinase FAK is the main effector of integrins,
converting changes in the extracellular matrix into intracellular
signaling.

As FAK is both downstream and specifically activated by integrins
and Nrg-1β, here we will explore the role of FAK in the heart as a
protective factor and a possible mediator of the crosstalk between
ErbB and Integrin receptors (Fig. 1).
2. Nrg-1β/ErbB2/ErbB4 signaling

2.1. Nrg-1β/ErbB dependent Akt and Erk1/2 signaling and their role in
the heart

Both Erk1/2 and Akt signaling pathways have been extensively
studied in the heart and we will just briefly summarize these studies
here (for a detailed review on these pathways as NRG-1β downstream
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effectors please refers to Pentassuglia and Sawyer, 2009, Experimental
Cell Research: The role of Neuregulin-1β/ErbB signaling in the heart
[6]). Several studies conducted so far demonstrate that both Erk1/2
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cardio-myopathy and a higher susceptibility to stress stimuli [4].
Cardiac-specific deletion of both Grb2-associated binder (GAB) [9,10]
1 and 2, scaffolding adaptor proteins that mediates Nrg1β/ErbB signal-
ing, abolishes Nrg-1β induced phosphorylation of both Erk1/2 and
Akt. Concomitantly these hearts show profound dilated features
associated with deposition of both collagen and elastic fibers, and
alterations at the cardiac vessels [9].

There is growing evidence that the Nrg-1β/ErbB2 signaling plays a
critical role in conditions of stress. Ex-vivo ischemia reperfusion of
isolated hearts in the Langendorff system induces Nrg-1β cleavage,
activation and phosphorylation of the ErbB4 receptor and downstream
signaling pathways. These data suggest that the ErbB receptors are
possibly involved in cardiac recovery [11]. Nrg-1β preconditioning
attenuates apoptotic cell death during ischemic injury as shown by a
decrease in cleaved caspase-3 and an increase in the phosphorylation
levels of Akt. Concomitant inhibition of PI3K signaling was able
to block Nrg-1β-dependent cardioprotection [12]. In isolated adult
myocytes pretreatment with Nrg-1β prevents doxorubicin-induced
cell death. Akt inhibition blocks this effect, whereas a constitutively
active form of Akt exerts a function similar to Nrg-1β itself [13]. Akt
also mediates Nrg-1β/ErbB protection against reactive oxygen species
(ROS). Nrg-1β pretreatment significantly decreases ROS in cultured
myocytes treated with hydrogen peroxide, while inhibition of Akt
abolishes this effect [14]. In mice treated with doxorubicin, Nrg-1β
promotes survival and preservation of cTnI and cTnC from degradation
in the heart via Akt signaling [15], further proving a critical role for Akt
in Nrg-1β/ErbB-dependent survival.

Erk1/2 signaling activated by Nrg-1β has been implicated in the
promotion of cardiomyocyte differentiation from embryonic stem
cells. During the development of embryonic bodies there is a distinc-
tive pattern of ErbB receptor expression. All cells of the embryonic
body express ErbB2 but only the myocyte fraction expresses
ErbB4, which is essential for their development and survival [16].
ErbB induced cardiomyocyte development requires the activation of
Erk1/2, as the expression of either wild type or constitutively active
MEK1 is sufficient to increase the number of cells expressing myosin
heavy chain [17]. In both neonatal and adultmyocytes, Erk1/2mediates
Nrg-1β-dependent hypertrophy, protein expression, and sarcomere
structure [18–20]. The inhibition of ErbB2 or Erk1/2 leads to myofila-
ment disarray both in adult and neonatal myocytes [18,21]. These
data support a role for the Nrg-1β/ErbB2/Erk1/2 signaling axis in the
assembly and maintenance of the contractile apparatus in the heart.

2.2. Nrg-1β dependent FAK activation

FAK, a component of the Focal Adhesion Complex (FAC), interacts
and regulates several structural and signaling proteins, including the
Nrg-1β signaling pathway in the heart. FAK has three distinct domains:
the N-terminal FERM (F for 4.1 protein, E for ezrin, R for radixin and
M for moesin), which has autoinhibitory function [10,22], a central
kinase domain [23,24], and a C-terminal Focal Adhesion Targeting
(FAT) domain [25,26]. The first step of FAK activation requires auto-
phosphorylation of the tyrosine residues 397 induced by integrin acti-
vation (see paragraph 4.1). The FERM domain has an auto-inhibitory
function and integrin activation leads to FAK binding to talin and paxillin
via FAT. This induces conformational changes that lead to displacement of
the FERM domain, releasing the autoinhibition; at this point FAK can
autophosphorylate itself at Y397. This autophosphorylation induces Src
binding and phosphorylation of Y576 and Y577 in the catalytic domain
(Fig. 1A) [27–29].

The different phosphorylation sites of FAK modulate either its own
catalytic activity or the affinity for binding proteins. Phosphorylation
of Y397 creates a motif recognized by SH2-domain containing proteins
(PLCγ, SOCS, GRB7, P120, and p85 of PI3K) [30–33]. Phosphorylation at
Y397 induces Src binding and activation of downstream signaling path-
way through both FAK and Src [34] and promotes the recruitment of
PI3K and p130CAS [33–36]. Src phosphorylation of FAK increases affin-
ity for SH3-domain mediated binding of p130CAS and for SH2- domain
mediated binding for CRB2 adaptor proteins [37,38]. Y925 can also
activate myosin light chain kinase via ERK2 [39,40]. The best-known
downstream targets of FAK are p130CAS and Paxillin. Recent experi-
ments show that FAK plays a role in FAC dynamics and modulation
[41] and promotes maturation of FAC with inhibition of α-actinin bind-
ing to actin filaments [42]. FAK localization at the Z-line suggests a role
in sarcomere organization as well [43].

In isolated adult rat ventricular myocytes (ARVM) Nrg-1β is able
to activate the Src/FAK signaling pathway. Nrg-1β treatment induces
phosphorylation of FAK at Y861 and Y925 that is most prominent at
the sites of the intercalated disk (Fig. 1B). This is associated with
formation of lamellipodia and ultimately cell–cell junctions [44]. This
signal may mediate the cardioprotective role of Nrg-1β in stress condi-
tions. In isolated hearts, ischemic injury leads to Nrg-1β cleavage and
ErbB4 as well as FAK phosphorylation [11]. Evidence collected in other
tissues shows similar findings. In the brain Nrg-1β induces FAK activa-
tion via ErbB2/ErbB3 heterodimer [45]. In different type of tumors
(brain, breast, and ovary) positive for the ErbB2 receptor FAK is activated
at baseline conditions [46–48] and promotes tumor cellmotility [49–51],
proliferation [52], formation of FAC [53,54], resistance to ErbB2 specific
chemotherapeutic agents [55].

2.3. Role of FAK in cardiac development

Cardiac morphogenesis is one of the first events that takes place
during embryonic development and requires the complex coordination
of recruitment, differentiation, and proliferation of cardiac and cardiac
precursors cells. Like the Nrg/ErbB pathway [1–3], FAK signaling is
involved in the embryonic development of the heart from its early
stages. Systemic deletion of FAK in mice is lethal and shows cardiac
defects in early embryogenesis as the heart fails to separate the
mesocardial and the endocardial layers and lethality is associated with
left ventricular non-compaction [56]. During heart development, a set
of cells, the Neuronal Crest Cells (NCCs), migrate from the neuronal
tube toward the developing heart to participate in the maturation of
the cardiac outflow tract in to the aorta and pulmonary trunk. FAK
expression is critical for the differentiation of the NCCs into smooth
muscle cells (SMCs), which participate in the development of the aortic
arch arteries. The failure of NCCs to develop in to SMCs results in the
regression of the developing aortic branches rather than a premature
halting of the process [57]. Embryonic myocyte chemotaxis is also
impaired, suggesting the involvement of FAK in myocyte migration
towards the cushion mesenchyme [58,59]. Similar to what is observed
in vivo, FAK regulates cardiogenesis and migration in cultured embry-
onic stem cells. Inhibition of FAK phosphorylation leads to decreased
cell migration, which stimulates ES cells to differentiate in cardiac line-
ages, as assessed by expression ofα-MHC [60]. Cardiac specific deletion
of FAK with the use of nkx2.5 promotor-driven Cre-recombinase
induces rapid cyanosis and mice die 10 to 120 min after birth. Analysis
of the embryonic cardiac tissue shows that FAK is reduced as early as
E13.5 and it is almost absent at E18.5. Histological analysis shows defect
in ventricular septation and in few cases the presence of a double-outlet
right ventricle, thickening of the semilunar valve leaflets but normal
trabeculation [58].

Similar to what has been observed in nkx2.5-driven FAK cardiac-
specific deletion, the use of MLC2a-Cre also leads to embryonic
death at an early stage of development. At E13.5 all embryos appear
normal, but at E14.5 mice show total body edema and nonspecific
focal hemorrhages associated with cardiac failure. Histological analy-
sis shows a thinning in the myocardium, septum, and trabeculae.
At E16.5 there are ventricular septa defects and thin ventricular
walls along with embryonic lethality. Analysis of the tissue with elec-
tronmicroscopy reveals a dilation of the rough endoplasmatic reticulum,
mitochondria with irregular or disrupted cristae, and thin disorganized
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myofibrils. At E14.5 there are also reduced numbers of mitotic cells
present in the heart of the FAK cardiac-restricted mice compared with
genetic and age matched mice. The few mice with cardiac specific FAK
deletion that survived into adulthood are fertile and they have a normal
lifespan, but examination of the heart shows eccentric right ventricle
hypertrophy [61].

2.4. Cardioprotective role of FAK in the adult heart

Several studies conducted so far demonstrate that in the adult
heart FAK mediates mechanical and hypertrophic signaling, and
exerts a critical role in cardiac survival, adaptation, and protections
of myofilament structure under conditions of stress [62–65]. Cardiac
specific deletion of FAK in mice at a perinatal stage does not alter
baseline cardiac function and hemodynamics [66], and there are no
differences seen in the posterior and intraventricular septal wall thick-
ness or LV chamber size [67]. However, when treated with Angiotensin
(Ang) II or subjected to trans-aortic constriction (TAC), these mice
develop eccentric hypertrophy associated with re-expression of
skeletal-actin, Atrial Natriuretic Factor (ANF), Brain Natriuretic Peptide
(BNP), beta Myosin Heavy Chain (MHC), and collagen I and VI. These
mice also display increased fibrosis, but no increase in cell death. In
contrast to these findings, expression of a truncated form of FAK
increases the basal level of apoptosis [68]. RNA analysis shows that
TAC-induced ANF expression is abolished in FAK deficient mice
concomitant with an increase in alpha but not in beta MHC [67]. FAK
deletion leads to disorganized myofibrils with increased interspace
filled with large aggregates of swollen mitochondrial [66,68]. Long
term exposure to TAC leads to an increase in wet lung weight, decreased
cardiac output, and increased interstitial fibrosis. FAK cardiac deficiency
blocks ERK1/2 activation induced by adrenergic stimulation [67], and
phosphorylation of both p130cas and paxillin is reduced [66,69]. In
aging mice FAK deficiency leads to spontaneous decrease of heart
weight/bodyweight andmyocyte cross-sectional area, increase thickness
of LV posterior wall and fibrosis [67].

Hypertrophy induced by Angiotensin II is blocked by the expres-
sion of FRNK, a naturally occurring dominant negative isoform of
FAK. In these myocytes ANP and NF-κB expression is decreased, as
well as Erk1/2 and Akt basal phosphorylation [70]. Treatment with
calcium chelators effectively blocks AngII induced phosphorylation
of FAK, ANF expression, and decreases expression of fatty acid
oxidation-related genes. Activation of the receptor PPARδ also blocks
FAK-dependent activation of Erk1/2 but not of c-Jun N-terminal
Kinase (JNK) [71]. In neonatal cardiomyocytes stimulation with
hypertrophic agonists induces activation of FAK at S910, which can inter-
act with paxillin and it is involved in sarcomere assembly, cell migration,
and heart failure. Further analysis shows that this activation depends on
Erk1/2 as well as Src/Erk5 and Protein Kinase C (PKC)δ/Erk5 [72]. FAK
overexpression, in absence of other stimuli, leads to concentric hypertro-
phy, associated with increased heart size, β-MHC expression, and left
ventricular wall thickening, without changes in the left ventricle diame-
ter or fractional shortening. In contrast FAK overexpression during pres-
sure overload exerts a cardio-protective role via Akt, mTORC1, S6K, and
rpS6 signaling [73]. Pressure overload alone can induce FAK activation
[74] and it associates with Src, Grb2 [75], and ARHGAP21 [76,77].

FAK also plays a critical role in linking events initiated bymechanical
stress during hypertrophic responses in cardiomyocytes. Mechanical
stretch activates and changes the localization of FAK, from the nucleus
to the myofilament [78], as well as increasing the phosphorylation of
Erk1/2, and paxillin [79,80]. FAK accumulated in myocytes of failing
hearts in spontaneously hypertensive rats [81,82] and it is phosphory-
lated by integrin receptors [64,83]. Inhibition of FAK blocks stretch-
induced ANF expression [78]. In cultured Neonatal Rat Ventricular
Myocytes (NRVM) FAK is associated with Shp2 and after stretch
this complex is significantly reduced. Stretch reduces protein tyrosine
phosphatase Shp2 phosphatase activity, and its inactivation leads to
increased basal FAK phosphorylation, cell size, and expression of
β-MHC [84]. Depletion of FAK with siRNA or inhibition of Src with the
kinase inhibitor PP2 blocks stretch induced activation of Erk1/2, Akt
S473, and S6K [84].

FAK is also involved in cardiomyocyte survival in the setting of
metabolic stress including ischemic injury. In isolated NRVM chemical
inhibition of glycolysis and myocardial respiration induces phos-
phorylation of FAK, its association with PI3K, and Akt activity [85].
Overexpression of FAK is cardioprotective during ischemic injury
by experimental myocardial infarction. FAK overexpressing mice
have smaller infarct area, higher ejection fraction and fractional
shortening after 8 weeks of remodeling. Further analysis shows re-
duced apoptosis and increased NF-κB translocation into the nucleus
and transcription activity [86]. FAK cardiac restricted deletion in
mice subjected to transient ligation of LAD coronary artery results
in a higher infarct size and cell death, as well as in a decrease in
heart function, and activation of NF-κB survival pathway [87].
Similar results were observed in mice overexpressing FRNK [85].

Stretch reduces basal phosphorylation of FAK at Y861, but it is
increased with concomitant inhibition of the AngII receptor. Over-
expression of FRNK or disruption of integrin β1D abolishes basal
and stretch-mediated phosphorylation of FAK and ERK1/2 [88].
Tension-mediated focal adhesion maturation is a critical step for
myocytes in adaptation to mechanical tension. Localization of vin-
culin at focal adhesion sites in myofibroblast depends on extracellular
matrix stiffness andmyosin II. Myosin II is also able tomodulate recruit-
ment of vinculin via FAK-dependent phosphorylation of paxillin [89].
3. ErbB/FAK/integrin interaction

3.1. The role of integrins in the heart

Integrins are transmembrane receptors able to sense alterations in
the extracellular matrix and translate them to the cytoskeleton. They
are formed by two different chains, α and β, non-covalently associated.
Both subunits are present in different splicing variants (18 for α and
8 for β) leading to more than 24 possible heterodimers [90,91]. Each
splicing variant and heterodimer has a specific expression pattern,
unique for tissue type and developmental stage [92–95]. Integrins can
regulate the expression levels and the activation status of ion channels,
as well as initiating specific ion currents directly or through the Src
tyrosine kinase signaling [96,97]. Hormone [98,99] and growth factor
receptors [100,101] often interact with integrins. Integrins are essential
for growth factor receptors and hormone mediated cell survival
[102,103], DNA synthesis [104,105], and chemotherapy resistance
[106].

Alterations in the ECM and integrin expression have been associ-
ated with various cardiac conditions. It has been observed that ac-
cumulation of ECM components in the myocardium and coronary
arteries leads to cardiac failure [107,108]. In pressure overload, integrin
receptors subtypes change, suggesting a role in mechano-transduction
[109–112]. Restricted deletion of β1 in myocytes leads to myocardial
fibrosis and development of spontaneous dilated cardiomyopathy in
6 month old mice, as well as an exaggerate response to pressure
overload without evidences of cell death [8]. A more severe phenotype
has been observed in transgenic mice overexpressing a dominant
negative isoform of β1. These transgenic mice die at perinatal stage
and their hearts display extensive fibrotic replacement [113].

Upon activation, integrins associate at focal adhesion sites and
bind actin filaments. The interaction with actin is mediated by
proteins with structural (talin and vinculin) [114,115], signaling
(Fak, Src, and PIPKγ) [116–118], and adaptor (p130CAS and melusin)
functions [119–123]. One of the best characterized pathways is
the Src/FAK signaling, which also promotes actin anchoring (see
paragraph 3.2) [24].
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3.2. Cross talk between integrins and ErbB receptors

Two different types of cross-talk between integrins and ErbB
receptor tyrosine kinase (RTK) have been identified. The first is
commonly called “collaborative”, where both integrins and RTK
need to be activated by their respective ligand to form a cluster
[124]. This interaction between RTK and integrins is mediated by
FAK [44,125]. In the second, called “direct”, integrins can directly
phosphorylate RTK without the need of growth factors and FAK
signaling [126,127].

In cancer cells there is solid evidence for integrin/ErbB2 cross talk,
whereas to date this has not been fully investigated in the heart. Cancer
cells overexpressing both ErbB2 and integrin receptorsα6β4 are highly
aggressive and have a malignant phenotype [128]. In cell lines of breast
carcinoma laminin induced phosphorylation of ErbB2 via integrin in-
teraction [129]. Further analysis demonstrated that both integrins
and ErbB2 co-localized [130,131] and formed aggregates with tyrosine
kinase proteins [44,125]. These observations suggest a possible interac-
tion between ErbB2 and integrin signaling. Expression of a constitu-
tively active ErbB2 isoform in MFC-7 breast cancer cells leads to
increase cell motility and it is associated with a higher expression of
the integrin β1 [132]. In human mammary and ovarian carcinoma
cells the integrin receptor α6β4 co-immunoprecipitates with ErbB2.
Further analysis demonstrated that upon binding to laminin α6β4
can also increase ErbB2 phosphorylation [128]. The co-activation of
both receptors is required to induce PI3K activation and motility in
NIH3T3 cells [124]. β4 integrin can also regulate ErbB2 dependent
DNA synthesis [104] and ErbB2 translation [133], enhances
ErbB2-dependent expression of the growth factor VEGF, which in
turn enhances tumour cell invasiveness [134,135], and transactivates
EGFR/ErbB2 signaling [133].

β1 integrin receptor is highly expressed in cardiomyocytes and is
also the most abundant in the heart and may well interact with ErbB
signaling according to literature in other cell types. Early on it was
shown that in metastatic breast carcinoma cells cell adhesion is
enhanced by activation of integrin β1 [136]. In an epithelial tumor
cell line overexpressing the ErbB2 receptor increases α5β1 expression
and improves cell survival [137]. In earlier stages ErbB2 activation
impairs spreading and adhesion on collagen surfaces by inactivating
integrin β1 via PKB and PI3K/mTOR signaling [138,139]. ErbB2 activa-
tion and overexpression can also induce scattering and apoptosis in
humanmammary epithelial cells cultured on collagen [140]. In contrast
inhibition of laminin binding to integrin receptors (α6β4 or α3β1)
sensitizes cancer cells toward ErbB2 specific cancer therapeutic agents
Herceptin and Lapatinib [55].

In cardiac myocytes Nrg-1β induces specific phosphorylation of
Src (Y215 and Y416) and FAK (Y867) and promotes the formation a
protein complex between ErbB2 and Src, FAK, p130CAS, and paxillin
[44]. These observations suggest the possibility of an ErbB/integrin
cross-talk in cardiomyocytes. We hypothesize that the activation of
FAK promotes the formation of an ErbB2/ErbB4/integrin complex,
recruits and phosphorylates p130CAS, and modulates focal adhesion
complex (FAC) and mechanical coupling (Fig. 1). Further work will
be necessary to fully explore this model in cardiac myocytes and
understand the role that this plays in regulating cardiac structure
and function.
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