8 research outputs found

    The efficacy of Link N as a mediator of repair in a rabbit model of intervertebral disc degeneration

    Get PDF
    Abstract Introduction Intervertebral disc (IVD) degeneration is associated with proteolytic degradation of the extracellular matrix, and its repair requires both the production of extracellular matrix and the downregulation of proteinase activity. These properties are associated with several growth factors. However, the use of growth factors in clinical practice is limited by their high cost. This cost can be circumvented using synthetic peptides, such as Link N, which can stimulate the synthesis of proteoglycan and collagen by IVD cells in vitro. The purpose of the present study was to evaluate the effect of Link N in vivo in a rabbit model of IVD degeneration. Methods New Zealand white rabbits received annular puncture in two lumbar discs. Two weeks after puncture, both punctured discs of each rabbit were injected with either Link N or saline. After 2 weeks, nine rabbits were euthanized and the annulus fibrosus (AF) and nucleus pulposus (NP) of Link N-injected and saline-injected IVDs were removed and used to prepare total RNA. Following reverse transcription, quantitative PCR was performed for aggrecan, COL2A1, COL1A1, ADAMTS-4, ADAMTS-5 and MMP-3. After 12 weeks, 19 rabbits were euthanized and the injected IVDs were removed for biochemical and histological analysis. Proteinase K digests were analyzed for DNA and sulfated glycosaminoglycan content. Disc height was monitored radiographically biweekly. Results Following needle puncture, disc height decreased by about 25% over 2 weeks, and was partially restored by Link N injection. Puncture of the IVD resulted in a trend towards decreased proteoglycan content in both the NP and AF, and a trend towards partial restoration following Link N injection, although under the time course used this did not achieve statistical significance. Link N did not alter the DNA content of the discs. Link N injection led to a significant increase in aggrecan gene expression and a significant decrease in proteinase gene expression in both the NP and AF, when compared with saline alone. Conclusions When administered to the degenerate disc in vivo, Link N stimulated aggrecan gene expression and downregulated metalloproteinase expression, and there was a trend towards increased proteoglycan content of the disc, in both the NP and AF. These are features needed for any agent designed to stimulate disc repair. In principle, therefore, Link N supplementation could be an option for treating disc degeneration

    The Potential of N-Rich Plasma-Polymerized Ethylene (PPE:N) Films for Regulating the Phenotype of the Nucleus Pulposus

    Get PDF
    We recently developed a nitrogen-rich plasma-polymerized biomaterial, designated “PPE:N” (N-doped plasma-polymerized ethylene) that is capable of suppressing cellular hypertrophy while promoting type I collagen and aggrecan expression in mesenchymal stem cells from osteoarthritis patients. We then hypothesized that these surfaces would form an ideal substrate on which the nucleus pulposus (NP) phenotype would be maintained. Recent evidence using microarrays showed that in young rats, the relative mRNA levels of glypican-3 (GPC3) and pleiotrophin binding factor (PTN) were significantly higher in nucleus pulposus (NP) compared to annulus fibrosus (AF) and articular cartilage. Furthermore, vimentin (VIM) mRNA levels were higher in NP versus articular cartilage. In contrast, the levels of expression of cartilage oligomeric matrix protein (COMP) and matrix gla protein precursor (MGP) were lower in NP compared to articular cartilage. The objective of this study was to compare the expression profiles of these genes in NP cells from fetal bovine lumbar discs when cultured on either commercial polystyrene (PS) tissue culture dishes or on PPE:N with time. We found that the expression of these genes varies with the concentration of N ([N]). More specifically, the expression of several genes of NP was sensitive to [N], with a decrease of GPC3, VIM, PTN, and MGP in function of decreasing [N]. The expression of aggrecan, collagen type I, and collagen type II was also studied: no significant differences were observed in the cells on different surfaces with different culture time. The results support the concept that PPE:N may be a suitable scaffold for the culture of NP cells. Further studies are however necessary to better understand their effects on cellular phenotypes

    Short Link N promotes disc repair in a rabbit model of disc degeneration

    No full text
    Abstract Background The degeneration of the intervertebral disc (IVD) is characterized by proteolytic degradation of the extracellular matrix, and its repair requires the production of an extracellular matrix with a high proteoglycan-to-collagen ratio characteristic of a nucleus pulposus (NP)-like phenotype in vivo. At the moment, there is no medical treatment to reverse or even retard disc degeneration. The purpose of the present study was to determine if a low dose of short link N (sLN), a recently discovered fragment of the link N peptide, could behave in a manner similar to that of link N in restoring the proteoglycan content and proteoglycan-to-collagen ratio of the disc in a rabbit model of IVD degeneration, as an indication of its potential therapeutic benefit in reversing disc degeneration. Methods Adolescent New Zealand white rabbits received an annular puncture with an 18-gauge needle into two noncontiguous discs to induce disc degeneration. Two weeks later, either saline (10 μL) or sLN (25 μg in 10 μL saline) was injected into the center of the NP. The sLN concentration was empirically chosen at a lower molar concentration equivalent to half that of link N (100 μg in 10 μL). The effect on radiographic, biochemical and histologic changes were evaluated. Results Following needle puncture, disc height decreased by about 25–30% within 2 weeks and maintained this loss for the duration of the 12-week study; a single 25-μg sLN injection at 2 weeks partially restored this loss in disc height. sLN injection led to an increase in glycosaminoglycans (GAG) content 12 weeks post-injection in both the NP and annulus fibrosus (AF). There was a trend towards maintaining control disc collagen-content with sLN supplementation and the GAG-to-collagen ratio in the NP was increased when compared to the saline group. Conclusions When administered to the degenerative disc in vivo, sLN injection leads to an increase in proteoglycan content and a trend towards maintaining control disc collagen content in both the NP and AF. This is similar to link N when it is administered to the degenerative disc. Thus, pharmacologically, sLN supplementation could be a novel therapeutic approach for treating disc degeneration

    SNUPN deficiency causes a recessive muscular dystrophy due to RNA mis-splicing and ECM dysregulation

    No full text
    SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis

    Research and Science Today Supplement 1/2014

    No full text
    corecore