4,384 research outputs found
Teaching “The Essay” as a Pathway to Research and First-Year Writing
This session will guide attendees through teaching “the essay,” as a flexible, adaptable, customizable form. Using ignorance as a starting place, students develop research strategies that focus on their own gaps in knowledge—as opposed to relying on pre-existing certainty, bias, or opinions. By working through the essay-writing process as an exploration, students develop “high-quality ignorance,” which allows for deeper authenticity. Complex essays allow students to combine multiple rhetorical strategies—narrative, interview, immersion, argument—creating customized essays, instead of following a traditional five-paragraph format. Along the path to the final essay, they alternate writing and research, showing their inextricable connection
How scientists use social media to communicate their research
Millions of people all over the world are constantly sharing an extremely wide range of fascinating, quirky, funny, irrelevant and important content all at once. Even scientists are no strangers to this trend. Social media has enabled them to communicate their research quickly and efficiently throughout each corner of the world. But which social media platforms are they using to communicate this research and how are they using them? One thing is clear: the range of social media platforms that scientists are using is relatively vast and dependent on discipline and sentiment. While the future of social media is unknown, a combination of educated speculation and persuasive fact points to the industry's continual growth and influence. Thus, is that not only are scientists utilizing social media to communicate their research, they must. The ability to communicate to the masses via social media is critical to the distribution of scientific information amongst professionals in the field and to the general population
Short versus long silver nanowires: a comparison of in vivo pulmonary effects post instillation.
BackgroundSilver nanowires (Ag NWs) are increasingly being used to produce touchscreens for smart phones and computers. When applied in a thin film over a plastic substrate, Ag NWs create a transparent, highly-conductive network of fibers enabling the touch interface between consumers and their electronics. Large-scale application methods utilize techniques whereby Ag NW suspensions are deposited onto substrates via droplets. Aerosolized droplets increase risk of occupational Ag NW exposure. Currently, there are few published studies on Ag NW exposure-related health effects. Concerns have risen about the potential for greater toxicity from exposure to high-aspect ratio nanomaterials compared to their non-fibrous counterparts. This study examines whether Ag NWs of varying lengths affect biological responses and silver distribution within the lungs at different time-points.MethodsTwo different sizes of Ag NWs (2 μm [S-Ag NWs] and 20 μm [L-Ag NWs]) were tested. Male, Sprague-Dawley rats were intratracheally instilled with Ag NWs (0, 0.1, 0.5, or 1.0 mg/kg). Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, and 21 days post exposure for analysis of BAL total cells, cell differentials, and total protein as well as tissue pathology and silver distribution.Results and conclusionsThe two highest doses produced significant increases in BAL endpoints. At Day 1, Ag NWs increased total cells, inflammatory polymorphonuclear cells (PMNs), and total protein. PMNs persisted for both Ag NW types at Day 7, though not significantly so, and by Day 21, PMNs appeared in line with sham control values. Striking histopathological features associated with Ag NWs included 1) a strong influx of eosinophils at Days 1 and 7; and 2) formation of Langhans and foreign body giant cells at Days 7 and 21. Epithelial sloughing in the terminal bronchioles (TB) and cellular exudate in alveolar regions were also common. By Day 21, Ag NWs were primarily enclosed in granulomas or surrounded by numerous macrophages in the TB-alveolar duct junction. These findings suggest short and long Ag NWs produce pulmonary toxicity; thus, further research into exposure-related health effects and possible exposure scenarios are necessary to ensure human safety as Ag NW demand increases
Recommended from our members
Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain.
BackgroundSilver nanoparticles (AgNP) are present in personal, commercial, and industrial products, which are often aerosolized. Current understanding of the deposition, translocation, and health-related impacts of AgNP inhalation is limited.ObjectivesWe determined a) the deposition and retention of inhaled Ag in the nasal cavity from nose-only exposure; b) the timing for Ag translocation to and retention/clearance in the olfactory bulb (OB); and c) whether the presence of Ag in the OB affects microglial activity.MethodsMale Sprague-Dawley rats were exposed nose-only to citrate-buffered 20- or 110-nm AgNP (C20 or C110, respectively) or citrate buffer alone for 6 hr. The nasal cavity and OB were examined for the presence of Ag and for biological responses up to 56 days post-exposure (8 weeks).ResultsThe highest nasal Ag deposition was observed on Day 0 for both AgNP sizes. Inhalation of aerosolized C20 resulted in rapid translocation of Ag to the OB and in microglial activation at Days 0, 1, and 7. In contrast, inhalation of C110 resulted in a gradual but progressive transport of Ag to and retention in the OB, with a trend for microglial activation to variably be above control.ConclusionsThe results of this study show that after rats experienced a 6-hr inhalation exposure to 20- and 110-nm AgNP at a single point in time, Ag deposition in the nose, the rate of translocation to the brain, and subsequent microglial activation in the OB differed depending on AgNP size and time since exposure. Citation: Patchin ES, Anderson DS, Silva RM, Uyeminami DL, Scott GM, Guo T, Van Winkle LS, Pinkerton KE. 2016. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ Health Perspect 124:1870-1875; http://dx.doi.org/10.1289/EHP234
Germline PTPRD mutations in Ewing sarcoma: biologic and clinical implications.
Ewing sarcoma occurs in children, adolescents and young adults. High STAT3 levels have been reported in approximately 50% of patients with Ewing sarcoma, and may be important in tumorigenesis. Protein tyrosine phosphatase delta (PTPRD) is a tumor suppressor that inhibits STAT3 activation. To date, while somatic mutations in PTPRD have been reported in diverse tumors, germline mutations of PTPRD have not been investigated in Ewing sarcoma or other cancers. We identified a novel germline mutation in the PTPRD gene in three of eight patients (37.5%) with metastatic Ewing sarcoma. Although the functional impact in two of the patients is unclear, in one of them the aberration was annotated as a W775stop germline mutation, and would be expected to lead to gene truncation and, hence, loss of the STAT3 dephosphorylation function of PTPRD. Since STAT3 is phosphorylated after being recruited to the insulin growth factor receptor (IGF-1R), suppression of IGF-1R could attenuate the enhanced STAT3 activation expected in the presence of PTPRD mutations. Of interest, two of three patients with germline PTPRD mutations achieved durable complete responses following treatment with IGF-1R monoclonal antibody-based therapies. Our pilot data suggest that PTPRD germline mutations may play a role in the development of Ewing sarcoma, a disease of young people, and their presence may have implications for therapy
Modulation of constitutive androstane receptor (CAR) and pregnane X receptor (PXR) by 6-arylpyrrolo[2,1-d][1,5]benzothiazepine derivatives, ligands of peripheral benzodiazepine receptor (PBR)
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) regulate xenobiotic sensing and metabolism through interactions with multiple exogenous and endogenous chemicals. Compounds that activate CAR are often ligands of PXR; attention is therefore given to discovery of new, receptor-specific chemical entities that may be exploited for therapeutic and basic research purposes. Recently, ligands of the peripheral benzodiazepine receptor (PBR), PK11195 and FGIN-1-27, were shown to modulate both CAR and PXR. PBR is a mitochondrial transport protein responsible for multiple regulatory functions, including heme biosynthesis, a major component in cytochrome P450 (CYP) enzymes. To investigate possible new roles for PBR involvement in metabolic regulation, expression of the CAR and PXR target genes, CYP2B6 and CYP3A4, was measured in human hepatocytes following treatment with a targeted PBR ligand set. Luciferase reporter assays with transiently expressed wild-type CAR (CAR1), splice variant CAR3, or PXR in HuH-7 cells were used to further study activation of these receptors. Four structurally related PBR ligands (benzothiazepines) differentially modulate CAR1, CAR3 and PXR activity. Benzothiazepine NF49 is an agonist ligand of CAR3, a partial agonist of PXR, exhibits greater inverse agonist activity on CAR1 than does PK11195, and is a new tool for studying these closely related nuclear receptors
Eye Tracking as a Measure of Receptive Vocabulary in Children with Autism Spectrum Disorders
This study examined the utility of eye tracking research technology to measure speech
comprehension in 14 young boys with autism spectrum disorders (ASD) and 15 developmentally
matched boys with typical development. Using eye tracking research technology, children were
tested on individualized sets of known and unknown words, identified based on their performance
on the Peabody Picture Vocabulary Test. Children in both groups spent a significantly longer
amount of time looking at the target picture when previous testing indicated the word was known
(known condition). Children with ASD spent similar amounts of time looking at the target and
non-target pictures when previous testing indicated the word was unknown (unknown condition).
However, children with typical development looked longer at the target pictures in the unknown
condition as well, potentially suggesting emergent vocabulary knowledge
Chromophores in molecular nanorings : when is a ring a ring?
The topology of a conjugated molecule plays a significant role in controlling both the electronic properties and the conformational manifold that the molecule may explore. Fully π-conjugated molecular nanorings are of particular interest, as their lowest electronic transition may be strongly suppressed as a result of symmetry constraints. In contrast, the simple Kasha model predicts an enhancement in the radiative rate for corresponding linear oligomers. Here we investigate such effects in linear and cyclic conjugated molecules containing between 6 and 42 butadiyne-linked porphyrin units (corresponding to 600 C–C bonds) as pure monodisperse oligomers. We demonstrate that as the diameter of the nanorings increases beyond ∼10 nm, its electronic properties tend toward those of a similarly sized linear molecule as a result of excitation localization on a subsegment of the ring. However, significant differences persist in the nature of the emitting dipole polarization even beyond this limit, arising from variations in molecular curvature and conformation
Morphological Description of Telaepolella tubasferens n. g., n. sp., Isolate ATCC© 50593™, a Filose Amoeba in the Gracilipodida, Amoebozoa
We describe the amoeboid isolate ATCC© 50593™ as a new taxon, Telaepolella tubasferens n. gen. n. sp. This multinucleated amoeba has filose pseudopods and is superficially similar to members of the vampyrellids (Rhizaria) such as Arachnula impatiens Cienkowski, 1876, which was the original identification upon deposition. However, previous multigene analyses place this taxon within the Gracilipodida Lahr and Katz 2011 in the Amoebozoa. Here, we document the morphology of this organism at multiple life history stages and describe data underlying the description as a new taxon. We demonstrate that T. tubaspherens is distinct from Arachnula and other rhizarians (Theratromyxa, Leptophrys) in a suite of morphological characters such as general body shape, relative size of pseudopods, distinction of ecto- and endoplasmic regions, and visibility of nuclei in non-stained cells (an important diagnostic character). Although Amoebozoa taxa generally have lobose pseudopods, genera in Gracilipodida such as Flamella and Filamoeba as well as several organisms previously classified as protosteloid amoebae (e.g. schizoplasmodiis, cavosteliids and Stemonitales) present filose pseudopodia. Thus, classification of amoeboid organisms merely by filose-lobose distinction must be reconsidered
Speaking out about gender imbalance in invited speakers improves diversity.
Omissions of qualified women scientists from major meeting programs continue to occur despite a surge in articles indicating persistent gender-discriminatory practices in hiring and promotion, and calls for gender balance in conference organizing committees
- …