71 research outputs found

    A Sr-Rich Star on the Main Sequence of Omega Centauri

    Get PDF
    Abundance ratios relative to iron for carbon, nitrogen, strontium and barium are presented for a metal-rich main sequence star ([Fe/H]=--0.74) in the globular cluster omega Centauri. This star, designated 2015448, shows depleted carbon and solar nitrogen, but more interestingly, shows an enhanced abundance ratio of strontium [Sr/Fe] ~ 1.6 dex, while the barium abundance ratio is [Ba/Fe]<0.6 dex. At this metallicity one usually sees strontium and barium abundance ratios that are roughly equal. Possible formation scenarios of this peculiar object are considered.Comment: 13 pages, 3 figures. Accepted to ApJ

    Abundances on the Main Sequence of Omega Centauri

    Full text link
    Abundance ratios of carbon, nitrogen and strontium relative to iron, calculated using spectrum synthesis techniques, are given for a sample of main sequence and turnoff stars that belong to the globular cluster omega Centauri. The variations of carbon, nitrogen and/or strontium show several different abundance patterns as a function of [Fe/H]. The source of the enhancements/depletions in carbon, nitrogen and/or strontium may be enrichment from asymptotic giant branch stars of low (1--3 solar masses) and intermediate (3--8 solar masses) mass. Massive rotating stars which produce excess nitrogen without carbon and oxygen overabundances may also play a role. These abundances enable different contributors to be considered and incorporated into the evolutionary picture of omega Cen.Comment: 43 Pages, 13 Figures. Accepted for publication in Ap

    Novel understanding on genetic mechanisms of enteric neuropathies leading to severe gut dysmotility

    Get PDF
    The enteric nervous system (ENS) is the third division of the autonomic autonomic nervous system and the largest collection of neurons outside the central nervous system (CNS). The ENS has been referred to as "the brain in the gut" or "the second brain of the human body" because of its highly integrated neural circuits controlling a vast repertoire of gut functions, including absorption/secretion, splanchnic blood vessels, some immunological aspects, intestinal epithelial barrier, and gastrointestinal (GI) motility. The latter function is the result of the ENS fine-tuning over smooth musculature, along with the contribution of other key cells, such as enteric glia (astrocyte like cells supporting and contributing to neuronal activity), interstitial cells of Cajal (the pacemaker cells of the GI tract involved in neuromuscular transmission), and enteroendocrine cells (releasing bioactive substances, which affect gut physiology). Any noxa insult perturbing the ENS complexity may determine a neuropathy with variable degree of neuro-muscular dysfunction. In this review, we aim to cover the most recent update on genetic mechanisms leading to enteric neuropathies ranging from Hirschsprung's disease (characterized by lack of any enteric neurons in the gut wall) up to more generalized form of dysmotility such as chronic intestinal pseudo-obstruction (CIPO) with a significant reduction of enteric neurons. In this line, we will discuss the role of the RAD21 mutation, which we have demonstrated in a family whose affected members exhibited severe gut dysmotility. Other genes contributing to gut motility abnormalities will also be presented. In conclusion, the knowledge on the molecular mechanisms involved in enteric neuropathy may unveil strategies to better manage patients with neurogenic gut dysmotility and pave the way to targeted therapies

    Early versus delayed antiretroviral therapy based on genotypic resistance test: Results from a large retrospective cohort study

    Get PDF
    Rapid start of antiretroviral therapy (ART) pending genotypic resistance test&nbsp;(GRT) has been recently proposed, but the effectiveness of this strategy is still debated.&nbsp;The rate of virological success (VS), defined as HIV-RNA\u2009&lt;\u200950 copies/ml, with and without GRT was compared in drug-na\uefve individuals enrolled in the Italian ARCA cohort who started ART between 2015 and 2018.&nbsp;521 individuals started ART: 397 without GRT (pre-GRT group) and 124 following GRT (post-GRT group). Overall, 398 (76%) were males and 30 (6%) were diagnosed with AIDS. In the pre-GRT group, baseline CD4+\u2009cell counts were lower (p\u2009&lt;\u20090.001), and viral load was higher (p\u2009&lt;\u20090.001) than in the post-GRT group. The estimated probability of VS in pre-GRT versus post-GRT group was 72.54% (CI95 : 67.78-76.60) versus 66.94% (CI95 : 57.53-74.26) at Week 24&nbsp;and 92.40% (CI95 : 89.26-94.62) versus 92.92% (CI95 : 86.35-96.33) at Week 48, respectively (p\u2009=\u20090.434). At Week 48, VS was less frequent among individuals with baseline CD4+\u2009cell counts &lt;200 versus &gt;500 (90.33% vs. 97.33%), log viral load &lt;5.00&nbsp;versus &gt;5.70 log10 cps/ml (97.17% vs 78.16%;&nbsp;p\u2009&lt;\u20090.001), and those treated with protease inhibitors or non-nucleoside reverse transcriptase inhibitors versus those treated with integrase strand transfer inhibitors (p\u2009&lt;\u20090.001).&nbsp;The rate of VS does not seem to be affected by an early ART initiation pending GRT results, but it could be influenced by the composition of the ART regimen, as well as immuno-virological parameters

    Phylogenetic conservation of Trop-2 across species—rodent and primate genomics model anti-Trop-2 therapy for pre-clinical benchmarks

    Get PDF
    A phylogenetic conservation analysis of Trop-2 across vertebrate species showed a high degree of sequence conservation, permitting to explore multiple models as pre-clinical benchmarks. Sequence divergence and incomplete conservation of expression patterns were observed in mouse and rat. Primate Trop-2 sequences were found to be 95%–100% identical to the human sequence. Comparative three-dimension primate Trop-2 structures were obtained with AlphaFold and homology modeling. This revealed high structure conservation of Trop-2 (0.66 ProMod3 GMQE, 0.80–0.86 ± 0.05 QMEANDisCo scores), with conservative amino acid changes at variant sites. Primate TACSTD2/TROP2 cDNAs were cloned and transfectants for individual ORF were shown to be efficiently recognized by humanized anti-Trop-2 monoclonal antibodies (Hu2G10, Hu2EF). Immunohistochemistry analysis of Macaca mulatta (rhesus monkey) tissues showed Trop-2 expression patterns that closely followed those in human tissues. This led us to test Trop-2 targeting in vivo in Macaca fascicularis (cynomolgus monkey). Intravenously injected Hu2G10 and Hu2EF were well tolerated from 5 to 10 mg/kg. Neither neurological, respiratory, digestive, urinary symptoms, nor biochemical or hematological toxicities were detected during 28-day observation. Blood serum pharmacokinetic (PK) studies were conducted utilizing anti-idiotypic antibodies in capture-ELISA assays. Hu2G10 (t1/2 = 6.5 days) and Hu2EF (t1/2 = 5.5 days) were stable in plasma, and were detectable in the circulation up to 3 weeks after the infusion. These findings validate primates as reliable models for Hu2G10 and Hu2EF toxicity and PK, and support the use of these antibodies as next-generation anti-Trop-2 immunotherapy tools

    Assessment of the peripheral microcirculation in patients with and without shock: a pilot study on different methods

    Get PDF
    Microvascular dysfunction has been associated with adverse outcomes in critically ill patients, and the current concept of hemodynamic incoherence has gained attention. Our objective was to perform a comprehensive analysis of microcirculatory perfusion parameters and to investigate the best variables that could discriminate patients with and without circulatory shock during early intensive care unit (ICU) admission. This prospective observational study comprised a sample of 40 adult patients with and without circulatory shock (n = 20, each) admitted to the ICU within 24 h. Peripheral clinical [capillary refill time (CRT), peripheral perfusion index (PPI), skin-temperature gradient (Tskin-diff)] and laboratory [arterial lactate and base excess (BE)] perfusion parameters, in addition to near-infrared spectroscopy (NIRS)-derived variables were simultaneously assessed. While lactate, BE, CRT, PPI and Tskin-diff did not differ significantly between the groups, shock patients had lower baseline tissue oxygen saturation (StO₂) [81 (76–83) % vs. 86 (76–90) %, p = 0.044], lower StO₂min [50 (47–57) % vs. 55 (53–65)  %, p = 0.038] and lower StO₂max [87 (80–92) % vs. 93 (90–95) %, p = 0.017] than patients without shock. Additionally, dynamic NIRS variables [recovery time (r = 0.56, p = 0.010), descending slope (r = − 0.44, p = 0.05) and ascending slope (r = − 0.54, p = 0.014)] and not static variable [baseline StO₂ (r = − 0.24, p = 0.28)] exhibited a significant correlation with the administered dose of norepinephrine. In our study with critically ill patients assessed within the first twenty-four hours of ICU admission, among the perfusion parameters, only NIRS-derived parameters could discriminate patients with and without shock.Facultad de Ciencias Médica

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Effects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonate

    Get PDF
    12 Pags.- 2 Tabls.- 5 Figs.- Supp. Data.Iron deficiency is a yield-limiting factor with major implications for crop production, especially in soils with high CaCO3. Because stems are essential for the delivery of nutrients to the shoots, the aim of this work was to study the effects of Fe deficiency on the stem proteome of Medicago truncatula. Two-dimensional electrophoresis separation of stem protein extracts resolved 276 consistent spots in the whole experiment. Iron deficiency in absence or presence of CaCO3 caused significant changes in relative abundance in 10 and 31 spots, respectively, and 80% of them were identified by mass spectrometry. Overall results indicate that Fe deficiency by itself has a mild effect on the stem proteome, whereas Fe deficiency in the presence of CaCO3 has a stronger impact and causes changes in a larger number of proteins, including increases in stress and protein metabolism related proteins not observed in the absence of CaCO3. Both treatments resulted in increases in cell wall related proteins, which were more intense in the presence of CaCO3. The increases induced by Fe-deficiency in the lignin per protein ratio and changes in the lignin monomer composition, assessed by pyrolysis-gas chromatography–mass spectrometry and microscopy, respectively, further support the existence of cell wall alterations. Biological significance: In spite of being essential for the delivery of nutrients to the shoots, our knowledge of stem responses to nutrient deficiencies is very limited. The present work applies 2-DE techniques to unravel the response of this understudied tissue to Fe deficiency. Proteomics data, complemented with mineral, lignin and microscopy analyses, indicate that stems respond to Fe deficiency by increasing stress and defense related proteins, probably in response of mineral and osmotic unbalances, and eliciting significant changes in cell wall composition. The changes observed are likely to ultimately affect solute transport and distribution to the leaves.Work supported by the Spanish Ministry of Science and Competitiveness (MINECO; projects AGL2012-31988, AGL2011-25379 and AGL2013-42175-R, co-financed by FEDER), the Aragón Government (group A03), and the US Department of Agriculture, Agricultural Research Service (under Agreement number 58-6250-0-008 to MAG). Support was obtained by contracts I3P-CSIC (JRC), FPI-MINECO (GL and LC-L), JAE-PRE-CSIC (EG-C) and JAE-DOC-CSIC (JR), co-financed by the European Social Fund.Peer reviewe

    Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases

    Get PDF
    Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed

    The Renin Angiotensin System (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention

    Get PDF
    Despite emergence of new systemic therapies, metastatic melanoma remains a challenging and often fatal form of skin cancer. The renin–angiotensin system (RAS) is a major physiological regulatory pathway controlling salt–water equilibrium, intravascular volume and blood pressure. Biological effects of the RAS are mediated by the vasoactive hormone angiotensin II (AngII) via two receptor subtypes, AT1R (encoded by AGTR1) and AT2R (encoded by AGTR2). We report decreasing expression and increasing CpG island methylation of AGTR1 in metastatic versus primary melanoma and detection in serum of methylated genomic DNA from the AGTR1 CpG island in metastatic melanoma implying that AGTR1 encodes a tumour suppressor function in melanoma. Consistent with this hypothesis, antagonism of AT1R using losartan or shRNA-mediated knockdown in melanoma cell lines expressing AGTR1 resulted in acquisition of the ability to proliferate in serum-free conditions. Conversely, ectopic expression of AGTR1 in cell lines lacking endogenous expression inhibits proliferation irrespective of the presence of AngII implying a ligand-independent suppressor function for AT1R. Treatment of melanoma cell lines expressing endogenous AT2R with either AngII or the AT2R-selective agonist Y6AII induces proliferation in serum-free conditions whereas the AT2R-specific antagonists PD123319 and EMA401 inhibit melanoma growth and angiogenesis and potentiate inhibitors of BRAF and MEK in cells with BRAF V600 mutations. Our results demonstrate that the RAS has both oncogenic and tumour suppressor functions in melanoma. Pharmacological inhibition of AT2R may provide therapeutic opportunities in melanomas expressing this receptor and AGTR1 CpG island methylation in serum may serve as a novel biomarker of metastatic melanoma
    corecore