15 research outputs found

    Dendritic Cells/Natural Killer Cross-Talk: A Novel Target for Human Immunodeficiency Virus Type-1 Protease Inhibitors

    Get PDF
    BACKGROUND: HIV-1 Protease Inhibitors, namely PIs, originally designed to inhibit HIV-1 aspartic protease, can modulate the immune response by mechanisms largely unknown, and independent from their activity on viral replication. Here, we analyzed the ability of PIs to interfere with differentiation program of monocytes toward dendritic cell (DCs) lineage, a key process in the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: Monocytes from healthy donors were isolated and induced to differentiate in vitro in the presence or absence of saquinavir, ritonavir, nelfinavir, indinavir or amprenavir (sqv, rtv, nlfv, idv, apv, respectively). These drugs demonstrated a differential ability to sustain the generation of immature DCs (iDCs) with an altered phenotype, including low levels of CD1a, CD86, CD36 and CD209. DCs generated in the presence of rtv also failed to acquire the typical phenotype of mature DCs (mDCs), and secreted lower amounts of IL-12 and IL-15. Accordingly, these aberrant mDCs failed to support activation of autologous Natural Killer (NK) cells, and resulted highly susceptible to NK cell-mediated cytotoxicity. CONCLUSIONS/SIGNIFICANCE: Our findings uncover novel functional properties of PIs within the DC-NK cell cross-talk, unveiling the heterogeneous ability of members of this class drugs to drive the generation of atypical monocyte-derived DCs (MDDCs) showing an aberrant phenotype, a failure to respond appropriately to bacterial endotoxin, a weak ability to prime autologous NK cells, and a high susceptibility to NK cell killing. These unexpected properties might contribute to limit inflammation and viral spreading in HIV-1 infected patients under PIs treatment, and open novel therapeutical perspectives for this class drugs as immunomodulators in autoimmunity and cancer

    Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

    Get PDF
    Abstract. The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay halflife. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported and the experimental challenges characterizing such activity are describe

    Diagnosing Gestational Diabetes with a Probably Too Simplified Diagnostic Procedure Compared to International Criteria: The Indian Case Study

    No full text
    Diagnostic procedures for the diagnosis of gestational diabetes mellitus (GDM) are not uniformly defined worldwide. We retrospectively applied two diagnostic procedures (i.e., the IADPSG and the Indian) to the same pregnant women in order to compare the clinical characteristics and the prevalence of risk factors for GDM. Overall, 1015 pregnant women were evaluated. GDM was diagnosed in 113 cases (11.1%) by the IADPSG criteria and in 105 cases (10.3%) by the Indian criteria. The women diagnosed with GDM according to the IADPSG criteria had higher pre-gestational BMIs, higher previous macrosomia rates, higher first trimester fasting blood glucose levels, higher fasting and 1 h glucose levels after glucose load at OGTT, and lower 2 h glucose levels at OGTT compared with the women with GDM diagnosed according to the Indian criteria. Only 49.6% of the women who were diagnosed by the IADPSG criteria were also diagnosed with GDM by the Indian diagnostic criteria. For 47.8% of the women who were diagnosed by the IADPSG criteria, a diagnosis of GDM was missed by applying the Indian diagnostic criteria. Interestingly, 49 women were diagnosed with GDM by the Indian criteria but were normal according to the IADPSG criteria. Different diagnostic criteria could lead to different GDM detection rates with different practical approaches

    Immunological Dysregulation in Multiple Myeloma Microenvironment

    No full text
    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo-and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target

    Immunological Dysregulation in Multiple Myeloma Microenvironment

    No full text
    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target

    FARP‐1 deletion is associated with lack of response to autism treatment by early start denver model in a multiplex family

    No full text
    Abstract Background Children with autism spectrum disorder (ASD) display impressive clinical heterogeneity, also involving treatment response. Genetic variants can contribute to explain this large interindividual phenotypic variability. Methods Array‐CGH (a‐CGH) and whole genome sequencing (WGS) were performed on a multiplex family with two small children diagnosed with ASD at 17 and 18 months of age. Both brothers received the same naturalistic intervention for one year according to the Early Start Denver Model (ESDM), applied by the same therapists, yielding dramatically different treatment outcomes. Results The older sibling came out of the autism spectrum, while the younger sibling displayed very little, in any, improvement. This boy was subsequently treated applying a structured Early Intensive Behavioral Intervention paired with Augmentative Alternative Communication, which yielded a partial response within another year. The ESDM nonresponsive child carries a novel maternally inherited 65 Kb deletion at chr. 13q32.2 spanning FARP1. Farp1 is a synaptic scaffolding protein, which plays a significant role in neural plasticity. Conclusion These results represent a paradigmatic example of the heuristic potential of genetic markers in predicting treatment response and possibly in supporting the targeted prescription of specific early intervention approaches
    corecore