186 research outputs found

    Exercise in Circles and Lines

    Get PDF

    Formation of Compact Myelin Is Required for Maturation of the Axonal Cytoskeleton

    Get PDF
    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons

    Formation of Compact Myelin Is Required for Maturation of the Axonal Cytoskeleton

    Get PDF
    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons

    Elevated CAIX Expression is Associated with an Increased Risk of Distant Failure in Early-Stage Cervical Cancer

    Get PDF
    Tumor hypoxia is associated with adverse outcome in many malignancies. The goal of this study was to determine if elevated expression of carbonic anhydrase IX (CAIX), a biomarker of hypoxia, predicts for recurrence in early-stage cervical cancer. The charts of all patients with early-stage cervical cancer, primarily FIGO IB, treated by radical hysterectomy at our institution from 1988–2001 were reviewed. Adequate pathologic specimens from patients who recurred or who had at least three years follow-up and remained disease-free were stained for CAIX. An immunohistochemical score (IHC) was generated from the extent/intensity of staining. Outcome, as measured by freedom from recurrence (FFR), distant metastases (FFDM) and local recurrence (FFLR), was analyzed as a function of age, IHC, lymph node status (LN) and histology. Forty-two relapsing patients and 76 non-relapsing patients were evaluated. In univariate analysis, +LN, though not IHC or histology, was a significant predictor of any recurrence. Both +LN and higher IHC were associated with decreased FFDM but not FFLR. Patients with both +LN and elevated IHC more frequently exhibited distant metastases as first site of failure (5-year FFDM 50%) than patients with only +LN, elevated IHC or neither feature (70, 85 and 95%, respectively, p = 0.0004). In multivariable analysis, only +LN was significantly associated with poorer FFDM (hazard ratio 4.6, p = 0.0015) though there was a strong trend with elevated CAIX expression (p = 0.069). Elevated CAIX expression is associated with more frequent distant metastases in early-stage cervical cancer, suggesting that patients with this characteristic may benefit from more aggressive treatment

    Microbial activity in the marine deep biosphere: progress and prospects

    Get PDF
    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth\u27s global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org)

    The Science Case for an Extended Spitzer Mission

    Full text link
    Although the final observations of the Spitzer Warm Mission are currently scheduled for March 2019, it can continue operations through the end of the decade with no loss of photometric precision. As we will show, there is a strong science case for extending the current Warm Mission to December 2020. Spitzer has already made major impacts in the fields of exoplanets (including microlensing events), characterizing near Earth objects, enhancing our knowledge of nearby stars and brown dwarfs, understanding the properties and structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to study galaxy birth and evolution. By extending Spitzer through 2020, it can continue to make ground-breaking discoveries in those fields, and provide crucial support to the NASA flagship missions JWST and WFIRST, as well as the upcoming TESS mission, and it will complement ground-based observations by LSST and the new large telescopes of the next decade. This scientific program addresses NASA's Science Mission Directive's objectives in astrophysics, which include discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars.Comment: 75 pages. See page 3 for Table of Contents and page 4 for Executive Summar

    Eu-Social Science: The Role of Internet Social Networks in the Collection of Bee Biodiversity Data

    Get PDF
    Background Monitoring change in species diversity, community composition and phenology is vital to assess the impacts of anthropogenic activity and natural change. However, monitoring by trained scientists is time consuming and expensive. Methodology/Principal Findings Using social networks, we assess whether it is possible to obtain accurate data on bee distribution across the UK from photographic records submitted by untrained members of the public, and if these data are in sufficient quantity for ecological studies. We used Flickr and Facebook as social networks and Flickr for the storage of photographs and associated data on date, time and location linked to them. Within six weeks, the number of pictures uploaded to the Flickr BeeID group exceeded 200. Geographic coverage was excellent; the distribution of photographs covered most of the British Isles, from the south coast of England to the Highlands of Scotland. However, only 59% of photographs were properly uploaded according to instructions, with vital information such as ‘tags’ or location information missing from the remainder. Nevertheless, this incorporation of information on location of photographs was much higher than general usage on Flickr (∼13%), indicating the need for dedicated projects to collect spatial ecological data. Furthermore, we found identification of bees is not possible from all photographs, especially those excluding lower abdomen detail. This suggests that giving details regarding specific anatomical features to include on photographs would be useful to maximise success. Conclusions/Significance The study demonstrates the power of social network sites to generate public interest in a project and details the advantages of using a group within an existing popular social network site over a traditional (specifically-designed) web-based or paper-based submission process. Some advantages include the ability to network with other individuals or groups with similar interests, and thus increasing the size of the dataset and participation in the project

    CEERS Key Paper VII: Emission Line Ratios from NIRSpec and NIRCam Wide-Field Slitless Spectroscopy at z>2

    Full text link
    We use James Webb Space Telescope Near-Infrared Camera Wide Field Slitless Spectroscopy (NIRCam WFSS) and Near-Infrared spectrograph (NIRSpec) in the Cosmic Evolution Early Release survey (CEERS) to measure rest-frame optical emission-line of 155 galaxies at z>2. The blind NIRCam grism observations include a sample of galaxies with bright emission lines that were not observed on the NIRSpec masks. We study the changes of the Ha, [OIII]/Hb, and [NeIII]/[OII] emission lines in terms of redshift by comparing to lower redshift SDSS and CLEAR samples. We find a significant (>3σ\sigma) correlation between [OIII]/Hb with redshift, while [NeIII]/[OII] has a marginal (2σ\sigma) correlation with redshift. We compare [OIII]/Hb and [NeIII]/[OII] to stellar mass and Hb SFR. We find that both emission-line ratios have a correlation with Hb SFR and an anti-correlation with stellar mass across the redshifts 0<z<9. Comparison with MAPPINGS~V models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-SFR galaxies. We additionally compare to IllustriousTNG predictions and find that they effectively describe the highest [OIII]/Hb ratios observed in our sample, without the need to invoke MAPPINGS models with significant shock ionizionation components.Comment: 16 pages, 11 figure

    CEERS Key Paper. V. Galaxies at 4 &lt; z &lt; 9 Are Bluer than They Appear-Characterizing Galaxy Stellar Populations from Rest-frame ∼1 μm Imaging

    Get PDF
    We present results from the Cosmic Evolution Early Release Survey on the stellar population parameters for 28 galaxies with redshifts 4 &lt; z &lt; 9 using imaging data from the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) combined with data from the Hubble Space Telescope and the Spitzer Space Telescope. The JWST/MIRI 5.6 and 7.7 μm data extend the coverage of the rest-frame spectral energy distribution to nearly 1 μm for galaxies in this redshift range. By modeling the galaxies’ SEDs the MIRI data show that the galaxies have, on average, rest-frame UV (1600 Å)—I-band colors 0.4 mag bluer than derived when using photometry that lacks MIRI. Therefore, the galaxies have lower ratios of stellar mass to light. The MIRI data reduce the stellar masses by 〈 Δ log M * 〉 = 0.25 dex at 4 &lt; z &lt; 6 and 0.37 dex at 6 &lt; z &lt; 9. This also reduces the star formation rates (SFRs) by 〈ΔlogSFR〉 = 0.14 dex at 4 &lt; z &lt; 6 and 0.27 dex at 6 &lt; z &lt; 9. The MIRI data also improve constraints on the allowable stellar mass formed in early star formation. We model this using a star formation history that includes both a “burst” at z f = 100 and a slowly varying (“delayed-τ”) model. The MIRI data reduce the allowable stellar mass by 0.6 dex at 4 &lt; z &lt; 6 and by ≈1 dex at 6 &lt; z &lt; 9. Applying these results globally, this reduces the cosmic stellar-mass density by an order of magnitude in the early Universe (z ≈ 9). Therefore, observations of rest-frame ≳1 μm are paramount for constraining the stellar-mass buildup in galaxies at very high redshifts.</p
    corecore