26 research outputs found

    Electroweak corrections in the 2HDM for neutral scalar Higgs-boson production through gluon fusion

    Get PDF
    We have computed the two-loop, electroweak corrections to the production of a light and a heavy neutral, scalar Higgs-boson through the important gluon fusion process in the Two-Higgs-Doublet Model. We provide our results in various renormalization schemes for different scenarios and benchmark points, which will be valuable for experimental studies at the LHC. We describe the technicalities of our two-loop calculation and augment it by a phenomenological discussion. Our results are also applicable to the gluonic neutral, scalar Higgs-boson decays.Comment: 36 pages, 11 figures, 8 tables, v2: version accepted for publication in the journa

    Radiative distortion of kinematic edges in cascade decays

    Full text link
    Kinematic edges of cascade decays of new particles produced in high-energy collisions may provide important constraints on the involved particles' masses. For the exemplary case of gluino decay g~→qqˉχ~\tilde{g}\to q\bar q \tilde{\chi} into a pair of quarks and a neutralino through a squark resonance, we study the hadronic invariant mass distribution in the vicinity of the kinematic edge. We perform a next-to-leading order calculation in the strong coupling αs\alpha_s and the ratio of squark width and squark mass \Gamma_\tilde{q}/m_\tilde{q}, based on a systematic expansion in \Gamma_\tilde{q}/m_\tilde{q}. The separation into hard, collinear and soft contributions elucidates the process dependent and universal features of distributions in the edge region, represented by on-shell decay matrix elements, universal jet functions and a soft function that depends on the resonance propagator and soft Wilson lines.Comment: 15 pages, 5 figure

    An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations

    Get PDF
    We consider two approaches to estimate and characterise the theoretical uncertainties stemming from the missing higher orders in perturbative calculations in Quantum Chromodynamics: the traditional one based on renormalisation and factorisation scale variation, and the Bayesian framework proposed by Cacciari and Houdeau. We estimate uncertainties with these two methods for a comprehensive set of more than thirty different observables computed in perturbative Quantum Chromodynamics, and we discuss their performance in properly estimating the size of the higher order terms that are known. We find that scale variation with the conventional choice of varying scales within a factor of two of a central scale gives uncertainty intervals that tend to be somewhat too small to be interpretable as 68% confidence-level-heuristic ones. We propose a modified version of the Bayesian approach of Cacciari and Houdeau which performs well for non-hadronic observables and, after an appropriate choice of the relevant expansion parameter for the perturbative series, for hadronic ones too.Comment: 34 pages, 24 figure

    Gauge-independent MS‾\overline{MS} renormalization in the 2HDM

    Get PDF
    We present a consistent renormalization scheme for the CP-conserving Two-Higgs-Doublet Model based on MS‾\overline{MS} renormalization of the mixing angles and the soft-Z2Z_2-symmetry-breaking scale MsbM_{sb} in the Higgs sector. This scheme requires to treat tadpoles fully consistently in all steps of the calculation in order to provide gauge-independent SS-matrix elements. We show how bare physical parameters have to be defined and verify the gauge independence of physical quantities by explicit calculations in a general RξR_{\xi}-gauge. The procedure is straightforward and applicable to other models with extended Higgs sectors. In contrast to the proposed scheme, the MS‾\overline{MS} renormalization of the mixing angles combined with popular on-shell renormalization schemes gives rise to gauge-dependent results already at the one-loop level. We present explicit results for electroweak NLO corrections to selected processes in the appropriately renormalized Two-Higgs-Doublet Model and in particular discuss their scale dependence.Comment: 52 pages, PDFLaTeX, PDF figures, JHEP version with Eq. (5.23) correcte

    Understanding Theoretical Uncertainties in Perturbative QCD Computations

    No full text

    Russland, Indien, China ein neues strategisches Dreieck?

    No full text
    UuStB Koeln(38)-940106459 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron.

    No full text
    Bacteria of the genus Bacteroides are common members of the human intestinal microbiota and important degraders of polysaccharides in the gut. Among them, the species Bacteroides thetaiotaomicron has emerged as the model organism for functional microbiota research. Here, we use differential RNA sequencing (dRNA-seq) to generate a single-nucleotide resolution transcriptome map of B. thetaiotaomicron grown under defined laboratory conditions. An online browser, called 'Theta-Base' ( www.helmholtz-hiri.de/en/datasets/bacteroides ), is launched to interrogate the obtained gene expression data and annotations of ~4500 transcription start sites, untranslated regions, operon structures, and 269 noncoding RNA elements. Among the latter is GibS, a conserved, 145 nt-long small RNA that is highly expressed in the presence of N-acetyl-D-glucosamine as sole carbon source. We use computational predictions and experimental data to determine the secondary structure of GibS and identify its target genes. Our results indicate that sensing of N-acetyl-D-glucosamine induces GibS expression, which in turn modifies the transcript levels of metabolic enzymes
    corecore