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Paris, France
cCNRS, UMR 7589, LPTHE, F-75005,

Paris, France
dNiels Bohr International Academy and Discovery Center,

Niels Bohr Institute, University of Copenhagen,

Blegdamsvej 17, DK-2100 Copenhagen, Denmark

E-mail: emanuele.bagnaschi@desy.de, cacciari@lpthe.jussieu.fr,

alberto.guffanti@nbi.dk, laura.jenniches@physik.uni-wuerzburg.de

Abstract: We consider two approaches to estimate and characterise the theoretical uncer-
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uncertainties with these two methods for a comprehensive set of more than thirty different
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find that scale variation with the conventional choice of varying scales within a factor of

two of a central scale gives uncertainty intervals that tend to be somewhat too small to

be interpretable as 68% confidence-level-heuristic ones. We propose a modified version

of the Bayesian approach of Cacciari and Houdeau which performs well for non-hadronic

observables and, after an appropriate choice of the relevant expansion parameter for the

perturbative series, for hadronic ones too.
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1 Introduction

Precision phenomenology of the kind aimed for by the Large Hadron Collider (LHC) physics

program requires accurate and reliable theoretical predictions to be compared to an ever

increasing range of high precision experimental measurements. Once theoretical and ex-

perimental uncertainties become of comparable size, it is crucial to be able to characterise

quantitatively the relevance of missing higher order terms in perturbative calculations.
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In Quantum Chromodynamics (QCD), which we take as a model here given its central

role in LHC physics, theoretical uncertainties stemming from missing higher orders in

the perturbative series are usually estimated by varying the unphysical renormalisation

and factorisation scales that appear in the calculation of cross sections and decay rates.

This approach has served the QCD community well for more than thirty years, and can

still be regarded as the most effective way to quickly estimate the missing higher order

uncertainties (MHOUs). It suffers, however, from some drawbacks. Chiefly among them

the fact that its uncertainty intervals cannot be characterised in a statistically meaningful

way and therefore cannot be combined easily with, for example, likelihood profiles for other

uncertainties, for instance of experimental origin.

One of us (MC) and N. Houdeau tried in [1] to overcome this limitation by proposing to

estimate MHOUs in a Bayesian context, so as to obtain a statistically meaningful posterior

distribution for the probability density profile of the uncertainty interval. The Cacciari-

Houdeau approach led to a model (henceforth CH) that relies on simple priors that, at

their core, partly mimic assumptions that are anyway implicitly made when one employs

the scale-variation method. We refer to [1] for a more detailed description of the CH

approach and its underlying Bayesian character, and e.g. to [2–4] for some examples of

applications of its results. In a context of estimation of MHOUs, we also point out the

different but possibly complementary approach of [5] that focuses on a mathematically

motivated approximate completion of a perturbative series.

The purpose of this paper is twofold. On the one hand, we revisit the Bayesian CH

model, and propose a modified version (which we will denote CH) which will trade some

of the simplicity of the original CH model for a better adaptability to a broader class of

observables, namely those related to processes with hadrons in the initial state. On the

other hand, we study the results of both the scale-variation and the CH model on a large

number of perturbatively calculated observables, so as to be able to assess their performance

in a (frequentist) statistically meaningful way. For the scale-variation approach, this means

that we can attempt to characterise a posteriori its uncertainty intervals in terms of some

confidence level that they correctly describe the MHOUs. For the CH model, this study

allows us to either assess whether the Degree of Belief (DoB) associated to the uncertainty

intervals is correct or, where needed, to estimate the appropriate expansion parameter of

the perturbative series that ensures that this be the case.

The paper is structured as follows. Section 2 reviews the scale-variation approach and

the Bayesian method introduced in [1], and describes the modifications to the CH model

that lead to the formulation of the CH approach used in this paper. Section 3 describes

the methodology that we have followed in our study of the performance of the scale-

variation and the CH approach, introduces the list of calculated observables used in the

survey, and presents our results. Section 4 compares the results of the scale-variation and

the CH method for the determination of MHOUs for some benchmark processes that we

consider either particularly relevant for LHC phenomenology or simply quite iconic, namely

e+e− → hadrons, Higgs decay to two gluons and to two photons, W and Z production

in pp collisions, pp → tt̄ and Higgs production in proton-proton collisions. A concluding

section follows, while a few appendices collect technical details and the numerical values of

the perturbative coefficients of the observables used in the survey and the benchmarking.
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2 Estimations of theoretical uncertainties

In this section, we introduce and describe two different approaches to the estimation of

the uncertainty stemming from the missing higher orders of a perturbatively calculated

observable:

• the scale-variation approach, which involves varying the unphysical renormalisation

and factorisation scales that appear in higher order perturbative calculations within

a given range around a chosen central value;

• the Bayesian approach introduced by Cacciari and Houdeau in [1], with the modifi-

cations discussed below.

In the following, we review how these two approaches work, and also set the appropriate

notations.

2.1 Uncertainty estimation by scale variation

The truncated perturbative expansion of an arbitrary observable O calculated up to a fixed

order k as a power series expansion in αs,

Ok(Q,µ) =

k∑
n=l

αns (µ)cn(Q,µ) , (2.1)

contains a residual, higher-order dependence on the renormalisation and/or factorisation

scales, here collectively denoted by µ.

The standard approaches to estimate the MHOUs are all based on the idea of varying

the scale(s) µ in an interval [Q/r, rQ], where r is an arbitrary factor often chosen to be equal

to 2, and Q is a typical hard scale of the process. The values of the observable obtained

at different scales are then used to derive an uncertainty interval. Different recipes can

be used to implement this prescription. Writing this interval as
[
O−k , O

+
k

]
around Ok (not

necessarily centred around it), the most common choices are:

1.

O−k = min{Ok(Q,Q/r), Ok(Q, rQ), Ok(Q,Q)} ,
O+
k = max{Ok(Q,Q/r), Ok(Q, rQ), Ok(Q,Q)} . (2.2)

2.

O−k = min
µ∈[Q/r,rQ]

{Ok(Q,µ)} , O+
k = max

µ∈[Q/r,rQ]
{Ok(Q,µ)} . (2.3)

3.

O±k = Ok ±
δk
2
, (2.4)

where we have defined

δk ≡ |Ok(Q, rQ)−Ok(Q,Q/r)| . (2.5)

4. Same as eq. (2.4) but with

δk ≡ max
µ∈[Q/r,rQ]

{Ok(Q,µ)} − min
µ∈[Q/r,rQ]

{Ok(Q,µ)} . (2.6)

– 3 –
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Generalisation to the case of two or more scales is straightforward and follows along

the same lines. The prescription which is probably most commonly used (see e.g. the QCD

review in [6]) , and which we will also use in our study, is an extension of eq. (2.2), i.e.

varying both the renormalisation and the factorisation scale (µr and µf ) as shown there,

but with the additional constraint 1/r ≤ µr/µf ≤ r, to avoid the appearance of unnaturally

large logarithms.1

The main problem with the scale-variation approach is that it does not provide a prob-

ability distribution for the uncertainty interval, which therefore has no statistical meaning.

It is also worth noting that the common choice r = 2 is merely a convention, and that the

choice of the central scale around which to perform the variation is also largely arbitrary. In

fact, in some cases this central scale is deliberately chosen away from the characteristic scale

of the process to satisfy other criteria. This is for instance the case for Higgs production

in gluon fusion, where the central scale is often chosen equal to mH/2 to mimic the result

obtained when performing soft-gluon resummation [8], and because around this value, the

cross section shows reduced sensitivity to the scale choice and an improved convergence of

the perturbative series [9].

2.2 The Cacciari-Houdeau Bayesian approach

The approach of Cacciari and Houdeau [1] uses a Bayesian framework to evaluate MHOUs.

It makes assumptions on the behaviour of the coefficients of a series of the form

Ok ≡ Ok(Q,Q) =

k∑
n=l

αns (Q)cn(Q,Q) ≡
k∑
n=l

αns cn , (2.7)

where the unphysical scales µ have been set to the central value Q, and we have implicitly

defined αs ≡ αs(Q) and cn ≡ cn(Q,Q). These assumptions are encoded into specific

Bayesian priors (detailed in [1]) and in the choice of the expansion parameter, taken here

to be αs. They allow one to determine an uncertainty density profile (the posterior of the

model) in the form of a conditional probability density for the remainder of the series,2

∆k ≡
∑∞

n=k+1 α
n
s cn, given the known perturbative coefficients, {cl, . . . , ck}. Assuming

that the dominant contribution to the remainder comes from the first unknown order, i.e.

∆k ' αk+1
s ck+1, one can derive [1] a simple analytic expression for the conditional density,

f(∆k|cl, . . . , ck) '
(

nc
nc + 1

)
1

2αk+1
s c̄(k)


1 if |∆k| ≤ αk+1

s c̄(k)(
αk+1
s c̄(k)
|∆k|

)nc+1

if |∆k| > αk+1
s c̄(k)

, (2.8)

where c̄(k) ≡ max(|cl|, · · · , |ck|) and nc is the number of known perturbative coefficients.

From this expression, one can appreciate the characteristics of the posterior distribution

for this model: a central plateau with power suppressed tails.

1To the best of our knowledge, this additional constraint was first adopted in [7], following a suggestion

by Stefano Catani.
2The use of an upper limit for the summation at infinity in ∆k should be considered as merely symbolic,

QCD series being asymptotic. In practice, the remainder that we will be dealing with will be limited to the

region of apparent convergence of the series, and will usually be approximated by its first term.
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The existence of such a probability density distribution for the uncertainty interval

represents the main difference with the scale-variation approach which only gives an interval

without a density profile.

Given the conditional density in eq. (2.8), it is possible to compute the smallest cred-

ibility interval for ∆k with a degree of belief (DoB) equal to p% (i.e. such that ∆k is

expected with p% credibility to be contained within the interval
[
−d(p)

k , d
(p)
k

]
),

d
(p)
k =

{
αk+1
s c̄(k)

nc+1
nc

p% if p% ≤ nc
nc+1

αk+1
s c̄(k) [(nc + 1)(1− p%)](−1/nc) if p% > nc

nc+1 .
(2.9)

2.3 The modified Cacciari-Houdeau approach (CH)

The CH model described above relies on a specific form of the perturbative expansion,

namely eq. (2.7). As a result, its estimate for the uncertainty is not invariant under a

rescaling of the expansion parameter from αs to αs/λ. While working on this project we

made a number of attempts to reformulate the model in a rescaling-invariant way. Ul-

timately, none of them turned out to be satisfactory, to the extent that each required

formulating priors much too informative, which shaped excessively the final posterior.3

Instead, we eventually settled on a slightly modified version of the CH model. In this mod-

ified model, henceforth denoted as CH, we rewrite the perturbative expansion of eq. (2.7)

in the form

Ok =
k∑
n=l

αns
λn

(n− 1)!
λncn

(n− 1)!
≡

k∑
n=l

(αs
λ

)n
(n− 1)! bn , (2.10)

with

bn ≡
λncn

(n− 1)!
, (2.11)

and submit the new coefficients bn to the same priors originally used for the cn in the CH

model. This leads to the following expressions for the probability density profile for the

remainder function ∆k

f(∆k|bl, . . . , bk) '
(

nc
nc + 1

)
1

2k!(αs/λ)k+1b̄(k)

 1 if |∆k| ≤ k!
(
αs

λ

)k+1
b̄(k)(

k!(αs/λ)k+1b̄(k)

|∆k|

)nc+1

if |∆k| > k!
(
αs

λ

)k+1
b̄(k)

(2.12)

and the credibility interval

d
(p)
k =

{
k!
(
αs
λ

)k+1
b̄(k)

nc+1
nc

p% if p% ≤ nc
nc+1

k!
(
αs
λ

)k+1
b̄(k) [(nc + 1)(1− p%)](−1/nc) if p% > nc

nc+1 .
(2.13)

The introduction of the (n − 1)! term in the expansion, which represents the main

modification with respect to the original CH model, can be justified on the ground that

such a factor is expected to appear in higher order perturbative calculations, e.g. those in

the large-β0 limit and in connection with renormalon contributions [11–14].

3For a detailed description of the reformulations considered in the course of the present work, and

eventually discarded, we refer the interested reader to [10].

– 5 –



J
H
E
P
0
2
(
2
0
1
5
)
1
3
3

The optimal value for the rescaling factor λ can be determined empirically by ob-

serving how the model fares in predicting MHOUs for observables for which higher order

perturbative computations are available. In section 3, we will present such a determination

of λ from a study based on a comprehensive set including more than thirty observables.

This method of determining λ brings some frequentist contamination into the Bayesian

approach. We consider this drawback acceptable at the present stage, but we note that

one could in principle further improve the model by introducing an additional prior for

the value of λ and thus avoid the frequentist contamination. The frequentist study on λ

performed in this work can then perhaps be used as a guide for the formulation of such an

additional prior.

2.3.1 Extension to hadronic observables

The original CH model was formulated focusing on observables in processes without

hadrons in the initial state, and its extension to observables with initial state hadrons is

potentially not straightforward. A generic hadronic observable (e.g. a total cross section)

can be written as a convolution integral

Ok(τ,Q) = L(Q)⊗
k∑
n=l

αnsCn(Q) (2.14)

where L is the parton-parton luminosity, Cn(Q) is the hard-scattering coefficient function,

τ is an appropriate hadronic scaling variable, Q is the characteristic energy scale of the

process and ⊗ denotes a generic convolution in the space of the hadronic scaling variables

(not explicitly shown on the right hand side of the equation). The unphysical renormali-

sation and factorisation scales are taken to be equal to Q as in the non-hadronic case, and

they are not explicitly shown. In eq. (2.14), the perturbative coefficient functions Cn are

usually distributions, and not simple numbers like the coefficients cn in the perturbative

expansion of the non-hadronic observables. This means that it is not possible to directly

apply the CH method described in section 2.3 to hadronic observables. This problem can

be overcome in two ways.

1. A first approach is to express the hadronic observable as a series expansion whose

coefficients include the convolution with the parton-parton luminosities, i.e. to rewrite

eq. (2.14), in analogy with the non-hadronic case, in the form

Ok(τ,Q) = L(Q)⊗
k∑
n=l

αnsCn(Q) ≡
k∑
n=l

(
αs
λh

)n
(n− 1)! Hn(τ,Q) (2.15)

where we have defined

Hn(τ,Q) ≡
λnh

(n− 1)!
hn ≡

λnh
(n− 1)!

L(Q)⊗ Cn(Q) . (2.16)

We now denote the rescaling parameter with λh, rather than λ, to stress the fact that

its value is a priori potentially different from the one used in the case of non-hadronic

observables. We then proceed like in the non-hadronic case, submitting the expansion

coefficients Hn to the same Bayesian priors used in the non-hadronic case.

– 6 –
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This approach is based on the assumption that the contribution coming from the non-

perturbative physics encoded in the parton-parton luminosity is roughly the same

at each perturbative order, or more generally that its presence does not spoil the

assumptions of the model. This approach has been adopted in some of the papers

that have used the CH approach in its original formulation, e.g. [3, 4].

2. A second approach is based on rewriting the observable in Mellin space, in the form

Ok(N,Q) = L(N + 1)

k∑
n=l

(
αs
λh

)n
(n− 1)! Bn(N,Q) , (2.17)

where

Bn(N,Q) ≡
λnh

(n− 1)!

∫ 1

0
dxxN−1Cn(x,Q) (2.18)

is the Mellin transform of the short-distance coefficient function Cn, rescaled by the

factor λnh/(n − 1)! introduced in CH, and L(N + 1) is the Mellin transform of the

parton-parton flux. We then observe that, if the Mellin inversion integral can be

shown to be dominated by a single Mellin moment Ok(N0, Q), one can simply apply

the Bayesian priors of the CH approach to the short-distance coefficients Bn(N0, Q),

which are ordinary numbers, and thus determine the uncertainty for the dominant

moment series. This uncertainty can then be translated back to the uncertainty on

the full result by an appropriate rescaling. This approach is viable because one can

show that at least in some cases (see e.g. [15, 16]), such a dominant Mellin moment

exists and gives a good approximation to the full result.

The main limitation of this approach, which a priori would be preferred because it

eliminates the possible contamination due to non-perturbative physics, is that it relies

on the predominance of not only a single Mellin moment but also a single production

channel (e.g. gluon-gluon fusion in Higgs production at the LHC) at all orders. If

this is not the case, the need to reweigh the various dominant Mellin moments in

the different parton channels will reintroduce contamination from non-perturbative

physics. A second, practical, limitation is that perturbative results are rarely available

in Mellin moment space from public codes, limiting the straightforward application of

this method to very few cases. Because of these limitations we use the first approach,

i.e. the convolution, as our main tool in this paper, but we also present in appendix B

two case studies for the Mellin-moment method.

3 Global survey

In this section, we assess the performance of the scale-variation procedure and of the CH

approach by studying how well they estimate the MHOUs when applied to a wide set of

observables. For every observable in the set we consider two quantities:

1. the size of the uncertainty predicted at a given perturbative order k by the approach

under consideration;

2. the known perturbative result for the same observable at order k + 1.

– 7 –
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For each of the methods, we then determine its global success rate in predicting the missing

higher order uncertainties at order k, defined as fraction of observables for which the result

of the calculation at order k+1 falls within the uncertainty interval predicted by the model

for the order k computation.

In the case of the scale-variation method, we study the behaviour of the global success

rate as we vary the scaling factor r defined in section 2.1. The observed success rate can

then be used to assign an a posteriori heuristic confidence level (CL) to the uncertainty

intervals obtained with a given value of r.

In the case of the CH Bayesian approach, we repeat the analysis described above for

various values of λ and, since we now have a probabilistic interpretation of the resulting

uncertainty intervals, various Degrees of Belief (DoB). This allows us to determine the

optimal value of λ to be used in CH, defined as the value of λ for which the model has a

global success rate which is closest to the requested DoB, for every possible DoB.

3.1 Setup

We perform two separate analyses, one for observables in processes without hadrons in the

initial state (non-hadronic observables) and one for observables in processes with hadrons

in the initial state (hadronic observables).

The non-hadronic observables considered in our analysis are listed in table 1. For

each observable, we show the leading order in αs, the maximum known order in αs and a

reference to the original literature from which we have extracted the values of the pertur-

bative coefficients. When the leading order contribution for these observables is entirely

electroweak in nature, we do not include the first coefficient c0 in the analysis when using

the CH approach, as was done in [1]. This is because we are interested in a perturbative

expansion in terms of the strong coupling.

The observables included in our hadronic analysis are listed in table 2, where again we

show the leading order in αs, the highest known order in αs and a reference to the code

implementing the computation that we used to evaluate the perturbative coefficients. In

this case, the leading order coefficient (i.e. the first one) is always retained for the analysis

with the CH approach, independently of its perturbative order in the strong coupling.4 In

order to avoid biasing the analysis by using different parton distribution functions (PDFs)

at different orders, we always use the same NNLO PDFs for all perturbative orders, with

the exception of the scale-variation study shown in the right plot of figure 2.

All the coefficients and the specific parameters for the calculations are given in ap-

pendix A, in tables 5 and 6. For all our analyses, we have used a private Mathematica code.

3.2 Results

3.2.1 Scale variation

In this section, we study the performance of the standard scale-variation approach. An

outcome of this analysis is the determination of a heuristic confidence level (CL) for the

4When this first coefficient is of zeroth order we set the (n − 1)! term equal to one in the perturbative

expansion in eq. (2.15).

– 8 –
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Non-Hadronic observables
Observable Leading order in αs Highest known order in αs Reference

R = σ(e+e−→hadr)
σ(e+e−→µ+µ−)

0 3 [17]

Bjorken sum rule 0 3 [18]

GLS sum rule 0 3 [19]

Γ(b→ ceν̄e) 0 2 [20]

Γ(Z → hadr) 0 4 [21]

Γ(Z → bb̄) 0 3 [22]

3-jets Thrust 1 3 [23]

3-jets Heavy jet mass 1 3

3-jets Wide jet broadening 1 3

3-jets Total jet broadening 1 3

3-jets C parameter 1 3

3-to-2 jet transition 1 3

γ
(+)
ns (N = 2) 1 3 [24]

γqq(N = 2) 1 3

γqg(N = 2) 1 3

H → bb̄|mb=0 0 4 [25]

H → gg 2 5 [26]

H → γγ 0 2 [27]

Table 1. List of non-hadronic observables used in the global survey. Note that when the leading

term is purely electroweak the first coefficient, c0, is not used when studying these non-hadronic

observables in the Bayesian approach.

uncertainty intervals given by scale variation, as a function of the scaling factor r that sets

the range over which the scales are varied, µ ∈ [Q/r, rQ].

In the non-hadronic case, we compare two of the prescriptions given in section 2.1,

which are supposedly the most widely used ones: a) take the maximum and the minimum

of the cross sections obtained with µ = rQ or µ = Q/r, as explained in eq. (2.2); b) take the

maximum and the minimum while scanning the whole interval of scales between Q/r and

rQ, as explained in eq. (2.3). Results for the first prescription (i.e. using only the extreme

values) are given in the left plot of figure 1. At LO, the heuristic CL of the scale-variation

uncertainty intervals for the conventional r = 2 value is of the order of 50%, and it reaches

a 68% level for r close to 4. For larger values of r, the CL stabilises around 80%. At NLO,

the CL is still of the order of 50% at r = 2, but it increases more rapidly with r than at LO,

and it is already around 68% for r ' 2.5–3. For higher values of r, it stabilises around 80%.

Results for the second scale-variation prescription (i.e. doing a full scan) are given in the

right plot of figure 1. While the LO results are identical to those of the first prescription,
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Hadronic observables
Observable Leading order in αs Highest known order in αs Reference

pp→ H 2 4 HIGLU [28, 29]

pp→ bb̄→ H 0 2 bbh@nnlo [30]

pp→ tt̄ 2 4 top++ [31]

pp→ Z → e+e− 0 2 DYNNLO [32]

pp→W+ → e+νe 0 2 DYNNLO

pp→W− → e−νe 0 2 DYNNLO

pp→ Z∗ → ZH 0 2 vh@nnlo [33]

pp→W±∗ →W±H 0 2 vh@nnlo

pp→ bb̄ 2 3 MCFM [34, 35]

pp→ Z + j 1 2 MCFM

pp→ Z + 2j 2 3 MCFM

pp→W± + j 1 2 MCFM

pp→W± + 2j 2 3 MCFM

pp→ ZZ 0 1 MCFM

pp→WW 0 1 MCFM

Table 2. List of hadronic observables used in the global survey.

the NLO heuristic CLs are significantly larger for r ≥ 4, reaching 100% at r = 5. This

is likely explained by the fact that at NLO accuracy, a full scan can capture better the

overall variation of the usually non-monotonic scale dependence than the evaluation of two

or three fixed points only.

We have also examined scale-variation uncertainties in the case of hadronic observables.

Since hadronic cross sections depend on two scales, the factorisation and renormalisation

scale, we vary them independently to obtain the scale-variation interval. As often done

in literature, we do not perform a full scan (too computationally expensive) but rather

evaluate the observables only at the centre and at the extremes of a scale range, avoiding

combinations that generate large logarithms, as explained at the end of section 2.1. Figure 2

shows the results of the analysis of the full set of hadronic observables. We have calculated

the cross sections both using NNLO PDFs at each order (left plot) and using order-matched

PDFs (right plot), i.e. using LO PDFs for the LO computation, NLO ones at NLO, etc.5 At

each perturbative order, the two choices are equivalent up to higher order terms. In both

cases, we see that, as common wisdom dictates, the LO scale-variation uncertainty fails to

capture the size of the NLO correction. At NLO, the two prescriptions differ qualitatively

in their performance. When using always NNLO PDFs, we can associate a 40% heuristic

CL to the standard scale variation with r = 2. The 68% CL level is attained around r = 3,

and the CL then stabilises around 90% CL for r ≥ 3.5. When using order-matched PDFs,

on the other hand, we obtain a very small heuristic CL (less than 30%) for r ≤ 3. The

CL reaches 68% for r just over 4 and then stabilises around 80% for larger values of r.

5We have used NNPDF 2.1 [36] at LO, and NNPDF 2.3 [37] at NLO and NNLO.
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Figure 1. Fraction of observables whose known higher order is found to be contained within the

uncertainty interval given by scale variation between µ = Q/r and µ = rQ. Left plot: only the

extremes and the central value of the [Q/r, rQ] are used. Right plot: the full [Q/r, rQ] interval is

scanned.
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Figure 2. Fraction of observables whose known higher order is found to be contained within the

uncertainty interval given by renormalisation and factorisation scale variation between µr,f = Q/r

and µr,f = rQ with the constraint 1/r ≤ µr/µf ≤ r. Only the seven points at the extremes and

at the centre of the scale-variation interval are used. Left plot: NNLO-evolved PDFs are used with

all perturbative orders. Right plot: PDFs evolution order is matched with the perturbative order

of the observable.

These two analyses for hadronic observables suggest that in the scale-variation approach

one may wish to use a rescaling factor r ∼ 3–4 in order to obtain a reasonably conservative

uncertainty interval,6 with a heuristic CL at least as large as 68%.

3.2.2 The modified Cacciari-Houdeau model (CH)

For each of the sets of observables listed in tables 1 and 2, we have performed an analysis

of the performance of the CH model in estimating the MHOUs. In this case, a parameter

of the model is the λ (λh) factor that defines the effective expansion parameter of the

6A rescaling factor r larger than 2 for estimating MHOUs through scale variation has been used in some

cases in phenomenological analyses. For instance, it has been advocated in the case of Higgs production in

gluon fusion in [38, 39].
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Figure 3. Non-hadronic survey: comparisons between DoB and actual success rate, to determine

the most appropriate value for λ. Left, histogram of the optimal λ value obtained with a DoB scan.

Right, plot of the success rate vs. the requested DoB for six values of λ.

perturbative series as written in the model, see eq. (2.10) and eq. (2.15). As far as the size

of the uncertainty intervals is concerned, the parameter λ (λh) plays a role analogous to that

of r in the scale-variation approach: the final result will depend on its value. However, since

in the Bayesian model the widths of the uncertainty intervals are associated with properly

defined credibility values, one can explicitly determine the optimal value for λ (λh) by

requiring that the model performs as expected, i.e. that the observed global success rate

corresponds to the DoB of the uncertainty intervals used in the analysis.

We first study the non-hadronic case. We show the results of this analysis graphically in

figure 3 in two different and complementary ways. Both analyses use observables calculated

at perturbative orders ranging from LO to N3LO, for a total of 37 tests performed using

the numerical coefficients given in table 5 in appendix A. The histogram in figure 3 (left)

is obtained by varying the DoB between 0.05 and 0.95 in steps of 0.01 (the uncertainty

interval returned by CH varies of course accordingly). For each DoB value, we determine

the λ value which gives the best agreement with the condition DoB = global success rate.

The resulting λ values are plotted in a histogram. At LO, the preferred values for λ can

be seen to be between 0.6 and 0.9, while at NLO, the histogram shows a preference for

the range 0.9–1.1. The plot in figure 3 (right) shows instead how DoB and success rate

compare for different values of λ in a global analysis of LO, NLO and NNLO observables.

We see that for values of λ in the 0.9–1.1 range, the requested DoB agrees well with the

observed success rate of the uncertainty prediction.7 This is in agreement with the result

that we obtain from the histogram analysis.

We perform the same analysis for the hadronic observables set using the coefficients

given in table 6 in appendix A. Figure 4 (left) shows the histogram of the optimal values

of λh for the DoB scan made using the full set of hadronic observables. The histogram

7This frequentist-like determination of λ is itself subject to an uncertainty due to the finite size of the

set of observables that we have used, which results in a statistical error on the observed success rate (see

appendix C for a quantitative analysis). This statistical error is displayed as a grey band in figure 3 (right).

One can see how it roughly translates into a limiting precision of ±0.2 in the determination of λ.

– 12 –



J
H
E
P
0
2
(
2
0
1
5
)
1
3
3

Figure 4. Hadronic survey: comparison between DoB and actual success rate to determine the

most appropriate value for λh for all hadronic observables.

peaks around λh ' 0.5 at NLO, which is smaller than the preferred λ value obtained from

the analysis of non-hadronic observables. In figure 4 (right) we plot the success rate as a

function of the DoB of the CH intervals for various values of λh for all hadronic observables

at LO and NLO. We observe that the preferred value of λh oscillates between 0.5 and 0.6

according to the requested DoB. Since we are mainly interested in determining 68% and

95% DoB intervals, we choose a value of λh equal to 0.6 as our best estimate, since it

appears to be the one for which the model performs better in this DoB range.

The results of the analyses presented in this section allow us to define the optimal

values for the parameters in the CH model as follows: we use a parameter λ = 1 when

considering non-hadronic observables, while we use λh = 0.6 when considering hadronic

observables.8

4 Benchmark processes

In this section, we compare the results obtained when computing MHOUs using either

the CH or the scale-variation prescription for a set of benchmark processes that we con-

sider interesting either because they provide an ideal testing ground for the CH method

(e+e− → hadrons and the Higgs decay into two gluons) or are particularly relevant for

LHC phenomenology (electroweak vector boson, top quark and Higgs production, Higgs

decay into two photons).

We use the results obtained in the global survey (see section 3) to fix the parameters of

the models. We recall that for the CH model, in the case of observables without initial-state

hadrons, the preferred value is λ = 1, while for observables involving initial-state hadrons,

it is λh = 0.6.

8It may be tempting to speculate that the smaller value of λ in the hadronic case (and therefore a larger

effective expansion parameter for the series) may be explained by the generally larger number of gluons

involved in these processes, and therefore by an expansion parameter closer to αsCA than to αsCF , but we

will refrain from doing so.
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For each process, we compare the uncertainty intervals obtained from the scale-

variation procedure with r = 2 and r = 4 with the 68% and 95% DoB intervals obtained

using CH. When analysing the CH results, we also consider the behaviour of the posterior

density function for the remainder of the series ∆k when increasing the perturbative order.

We show how, in most cases, the inclusion of further information leads to a progressive

narrowing of the distribution and a consequent reduction of the uncertainty.

4.1 Processes without hadrons in the initial state

We first consider three processes without hadrons in the initial state: the total cross section

for the production of hadrons in e+e− collisions and the decay of a Standard Model Higgs

boson into a pair of gluons or a pair of photons.

As discussed in [1], the total cross section for e+e− → hadrons is an ideal testing

case for understanding the behaviour of the CH model as perturbative coefficients up to

order α3
s are available in the literature. Their numerical values are listed in table 5 in

appendix A. In table 3a, we summarise the results of our study, comparing the size of the

68% and 95% DoB intervals obtained with the CH method with the uncertainty interval

of the scale-variation procedure for r = 2. A graphical representation of these intervals is

shown in figure 5. These results show that 68% DoB intervals from CH are always larger

than scale-variation intervals for r = 2 and, especially at higher orders, agree better in

size with those obtained using scale-variation with r = 4. In figure 6, we plot the full

posterior distribution for the remainder of the perturbative expansion, ∆k ≡
∑∞

n=k+1, at

each order k. We highlight the regions that contribute to the 68% and 95% DoB intervals

and compare them to the r = 2 scale-variation intervals, showing how, in this case, the

latter is always contained in the flat part of the Bayesian credibility distribution for ∆k.

At the LHC, Higgs decay rates constitute one of the most important processes which

do not involve initial-state hadrons. Their precise knowledge is crucial for the extraction

of the Higgs couplings to the other Standard Model particles. In our study, we consider

two Higgs decay channels which present complementary characteristics with respect to our

theoretical knowledge and to their phenomenological relevance. The first one is the Higgs

decay into two gluons which, despite being not relevant for Higgs phenomenology at the

LHC because of the large irreducible background due to QCD jets, is especially well suited

as a test case for our Bayesian analysis. Indeed, its perturbative QCD expansion is known

up to N3LO, and QCD corrections are quite sizeable. Next we study the decay of a Higgs

boson into two photons. In this case, QCD corrections are rather small and its perturbative

expansion is only known up to NLO. On the other hand, due to its clean experimental

signature, it is of great phenomenological importance and it is indeed one of the channels

where signs of new physics beyond the Standard Model are expected to appear. Again,

numerical values for the coefficients of the perturbative expansions of these observables

are collected in table 5 in appendix A, while the results of our analysis are summarised in

tables 3b–3c.

For the H → gg process, we plot the uncertainty intervals obtained using the scale-

variation and the CH methods in figure 7. We observe that the size of the 68% DoB

intervals obtained with the CH model is, with the exception of the N3LO band, slightly
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e+e− → Z → hadrons
Order Rk CH68%DoB CH95%DoB SVr=2

k = 1 1.03756 ±0.00693 ±0.04432 +0.0044
−0.0035

k = 2 1.03955 ±0.00107 ±0.00270 +0.00025
−0.00084

k = 3 1.03887 ±0.00034 ±0.00063 +0.00006
−0.00032

(a) MHOUs for hadron production in e+e− collisions at the Z pole.

The perturbative series of the observable at the order k is defined

as Rk(e+e−→Z→hadrons)=
∑k

n=0 α
n
s cn. R0 is normalised to 1.

H → gg
Order Γk[MeV] CH68%DoB CH95%DoB SVr=2

k = 2 0.185 ±0.065 ±0.420 +0.044
−0.032

k = 3 0.305 ±0.041 ±0.105 +0.040
−0.035

k = 4 0.342 ±0.017 ±0.031 +0.012
−0.019

k = 5 0.345 ±0.009 ±0.015 +0.0004
−0.006

(b) MHOUs for Higgs decay into two gluons. The perturbative

series of the observable at the order k is defined as Γk(H → gg) =∑k
n=2 α

n
s cn.

H → γγ
Order Γk[KeV] CH68%DoB CH95%DoB SVr=2

k = 1 9.548 ±0.030 ±0.192 +0.019
−0.015

k = 2 9.556 ±0.004 ±0.011 +0.001
−0.003

(c) MHOUs for Higgs decay into two photons. The perturbative

series of the observable at the order k is defined as Γk(H → γγ) =∑k
n=0 α

n
s cn.

Table 3. Results for the analysis of missing higher order uncertainties for benchmark processes

without hadrons in the initial state. We quote the perturbative order k at which the observable

is calculated, the central value for the theoretical prediction at that order, the MHOs uncertainty

intervals computed using the CH model at 68% DoB and 95% DoB, and the uncertainty interval

obtained using the scale variation (SV) procedure with r = 2.

bigger than the r = 2 and smaller than the r = 4 scale-variation intervals, coherently with

what we have observed in the global survey. We note here that, possibly because of a

large NLO K-factor, neither the r = 2 and r = 4 scale-variation interval nor the 68% DoB

CH interval at LO contains the NLO result. Conversely at higher orders, where successive

perturbative corrections decrease in size, the next order result is always included in both

the 68% DoB and the r = 2 intervals. The posterior density distributions for ∆k are plotted
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Figure 5. Size of the MHO uncertainty intervals at LO, NLO and NNLO for the e+e− → hadrons

process at the Z pole with the CH model with λ = 1, compared to those predicted by scale variation.

in figure 8. We notice that also for this observable, the r = 2 scale-variation interval is

always contained in the central plateau. In addition, we observe a progressive narrowing

of distributions with increasing perturbative order.

Finally we consider Higgs decay into two photons. In this case, predictions at NLO

are included within the LO uncertainty intervals determined using both the CH and the

scale-variation (r = 2) methods, as can be seen in figure 9. On the other hand, we notice

that the 68% DoB intervals are comparable in size with the intervals obtained from scale

variation with r = 4. This suggests that theoretical uncertainties of the Higgs decay into

two photon process, determined with the scale-variation procedure using r = 2, may be

underestimated if one attempts to assign them a 68% or larger heuristic CL. The posterior

density distributions for this process are shown in figure 10.

4.2 Processes with hadrons in the initial state

We now consider a number of processes with hadrons in the initial state for which theoretical

predictions are available at least up to NNLO, namely the production in proton-proton

collisions of Z and W bosons, top-antitop pairs, and Higgs. These processes are either

considered to be standard candles at hadronic colliders, or are particularly relevant for

LHC phenomenology. They provide precision tests of the Standard Model, and a significant

discrepancy between their experimental measurement and theoretical predictions might be

a hint of new physics at the TeV scale.

The numerical values of the perturbative coefficients together with the values used for

the renormalisation and factorisation scales and the strong coupling constant, are collected

in table 6 in appendix A. In table 7 in the same appendix, we list the cuts used in the

computation of the observables.

In table 4, we summarise the results of our studies comparing, for each process, the

size of the uncertainty intervals obtained with the CH method (68% and 95% DoB) to the

ones obtained using the scale-variation procedure (r = 2) at different perturbative orders.
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Figure 6. Posterior distribution for the remainder ∆k (blue solid) for the e+e− → hadrons process

at the Z pole with the CH model, 68% DoB interval (blue fill), 95% DoB interval (light-blue fill),

scale-variation interval with r = 2 (red solid).
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Figure 7. Size of the MHO uncertainty intervals at LO, NLO, NNLO and N3LO for the H → gg

process with the CH model with λ = 1, compared to those predicted by scale variation.

As far as weak vector boson production is concerned, a graphical comparison of predic-

tions obtained with the CH and the scale-variation methods is shown in figures 11 and 13.

We notice a similar behaviour for W+ and Z production. At LO, the 68% DoB uncertainty

intervals obtained with the CH prescription are substantially larger than the intervals ob-
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Figure 8. Posterior distribution for the remainder ∆k (blue solid) for the H → gg process with the

CH model, 68% DoB interval (blue fill), 95% DoB interval (light-blue fill), scale-variation interval

with r = 2 (red solid).
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Figure 9. Size of the MHO uncertainty intervals at NLO and NNLO for the H → γγ process with

the CH model with λ = 1, compared to those predicted by scale variation.
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Figure 10. Posterior distribution for the remainder ∆k (blue solid) for the H → γγ process

with the CH model, 68% DoB interval (blue fill), 95% DoB interval (light-blue fill), scale-variation

interval with r = 2 (red solid).

tained from the scale-variation prescription with either r = 2 or r = 4. At NLO the

difference in size is reduced, while at NNLO the CH intervals turn out to be smaller in

size than the scale-variation ones. The posterior distributions for ∆k, shown in figures 12

and 14, show a progressive narrowing with the increase of the perturbative order.

For the top-pair production process, the comparison of uncertainty intervals obtained

using the CH and scale-variation methods are shown in figure 15. In this case, the NLO

result for the cross section is contained in the LO uncertainty band determined by the

68% DoB interval of the CH prescription, while this is not the case for the scale-variation

interval obtained with r = 2. On the other hand, the NNLO central prediction for the cross

section is outside the LO intervals computed with either method. CH intervals with a DoB

of 68% are similar in size to the scale-variation intervals with r = 4, and scale-variation

intervals with r = 2 are always smaller than the CH ones at 68% DoB. The posterior

distributions for ∆k plotted in figure 16 show the expected narrowing as the perturbative

order increases, and that the r = 2 scale-variation interval is always contained in the flat

part of the distribution.

As a final benchmark process, we consider Higgs production in proton-proton colli-

sions, a process which is characterised by large perturbative corrections. The graphical

comparison in figure 17 shows that uncertainty intervals determined by scale variation

with r = 2 do not give a reliable error estimate for MHOUs for this observable, neither at

LO nor at NLO. We observe that the CH 68% DoB intervals are comparable in size with

scale-variation intervals obtained with r = 4. They both fail to properly estimate the large

NLO correction, the central result at NLO being far outside the LO uncertainty band, and
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Figure 11. Size of the MHO uncertainty intervals at LO, NLO and NNLO for the pp → W+

process at
√
S = 8 TeV with the CH model with λh = 0.6, compared to those predicted by scale

variation.

the error bars at NLO not even overlapping with the LO ones. The CH method appears to

produce a more reliable estimation of uncertainty intervals at higher orders, with the 68%

DoB intervals at NLO and NNLO showing a substantial overlap. The slowly-converging

pattern of the perturbative expansion for the Higgs cross section prediction is reflected

in the behaviour of the posterior distributions for ∆k, which are shown in figure 18. We

observe that the narrowing of the posterior distribution with increasing perturbative order

is now much less pronounced than for the other observables that we have considered in

this section. Also, the flat part of the posterior distribution for Higgs production broadens

significantly when going from LO to NLO.

5 Conclusions and outlook

In this paper, we have investigated the performance of two approaches in estimating the

theoretical uncertainties due to missing higher orders in perturbative QCD computations.

The first one is the widely used prescription of varying the unphysical factorisation and

renormalisation scales around a central value. The second (CH) is a modified version of

the Bayesian approach introduced by Cacciari and Houdeau in [1].

We have performed a global survey based on a wide set of perturbative observables.

Within this set, we have considered two categories, characterised by the absence (“non-

hadronic”) or the presence (“hadronic”) of hadrons in the initial state of a process, and

we have analysed them separately. The outcome of this survey has allowed us to assign

a heuristic confidence level to the uncertainty intervals returned by the scale-variation

approach and, in a separate analysis, to determine an optimal expansion parameter to be

employed in the CH Bayesian approach.
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pp→W+ → l+νl

Order σk[nb] CH68%DoB CH95%DoB SVr=2

k = 0 3.328 ±1.051 ±6.729 +0.319
−0.362

k = 1 3.718 ±0.139 ±0.351 +0.095
−0.147

k = 2 3.704 ±0.050 ±0.094 +0.061
−0.077

(a) MHOUs for W production in the Drell-Yan process at√
S = 8 TeV. The perturbative series of the observable at the

order k is defined as σk(pp→W+ → l+νl) =
∑k

n=0 α
n
s hn.

pp→ Z → e+e−

Order σk[nb] CH68%DoB CH95%DoB SVr=2

k = 0 0.4995 ±0.1548 ±0.9907 +0.047
−0.054

k = 1 0.5574 ±0.0201 ±0.0507 +0.012
−0.020

k = 2 0.5551 ±0.0071 ±0.0133 +0.010
−0.007

(b) MHOUs for Z production in the Drell-Yan process at√
S = 8 TeV. The perturbative series of the observable at

the order k is defined as σk(pp→ Z → e+e−) =
∑k

n=0 α
n
s hn.

pp→ tt̄

Order σk[pb] CH68%DoB CH95%DoB SVr=2

k = 2 146.32 ±82.61 ±528.76 +51.08
−34.32

k = 3 217.38 ±39.32 ±99.46 +26.94
−26.89

k = 4 244.36 ±25.24 ±47.60 +12.42
−13.52

(c) MHOUs for tt̄ production at
√
S = 8 TeV. The pertur-

bative series of the observable at the order k is defined as

σk(pp→ tt̄) =
∑k

n=2 α
n
s hn.

pp→ H

Order σk[pb] CH68%DoB CH95%DoB SVr=2

k = 2 5.6 ±3.35 ±21.46 +1.26
−0.98

k = 3 13.3 ±4.51 ±11.42 +2.74
−2.17

k = 4 18.37 ±3.52 ±6.65 +2.00
−2.06

(d) MHOUs for Higgs production in gluon fusion at
√
S =

8 TeV. The perturbative series of the observable at the order

k is defined as σk(pp→ H) =
∑k

n=2 α
n
s hn.

Table 4. Results for the analysis of missing higher order uncertainties for benchmark processes with

initial-state hadrons. We quote the perturbative order k at which the observable is calculated, the

central value for the theoretical prediction at that order, the MHOs uncertainty intervals computed

using the CH model at 68% DoB and 95% DoB, and the uncertainty interval obtained using the

scale variation (SV) procedure with r = 2.
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Figure 12. Posterior distribution for the remainder ∆k (blue solid) for the pp → W+ process at√
S = 8 TeV with the CH model, 68% DoB interval (blue fill), 95% DoB interval (light-blue fill),

scale-variation interval (red solid).
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Figure 13. Size of the MHO uncertainty intervals at LO, NLO and NNLO for the pp→ Z process

at
√
S = 8 TeV with the CH model with λh = 0.6, compared to those predicted by scale variation.

We have found that, in the scale-variation approach, the standard variation within

a factor of two with respect to the central scale can lead to uncertainty intervals whose

heuristic confidence level (CL) falls short of a conventional 68%, thereby potentially un-

derestimating the real uncertainty. This is true for both the non-hadronic observables and,
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Figure 14. Posterior distribution for the remainder ∆k (blue solid) for the pp → Z process at√
S = 8 TeV with the CH model, 68% DoB interval (blue fill), 95% DoB interval (light-blue fill),

scale-variation interval (red solid).
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Figure 15. Size of the MHO uncertainty intervals at LO, NLO and NNLO for the pp→ tt̄ process

at
√
S = 8 TeV with the CH model with λh = 0.6, compared to those predicted by scale variation.

more markedly, for the hadronic ones. We have determined that the rescaling factor needed

to obtain 68%-heuristic CL intervals is usually larger than two, with the specific value de-

pending on the class of observables under consideration and on the prescription used. In

general, and conservatively, a rescaling factor between three and four appears more likely

to give an estimation of the missing higher orders uncertainty that is consistent with a

68%-heuristic CL interpretation of the scale-variation intervals.
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Figure 16. Posterior distribution for the remainder ∆k (blue solid) for the pp → tt̄ process at√
S = 8 TeV with the CH model, 68% DoB interval (blue fill), 95% DoB interval (light-blue fill),

scale-variation interval (red solid).
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Figure 17. Size of the MHO uncertainty intervals at LO, NLO and NNLO for the pp → H via

gluon fusion process at
√
S = 8 TeV with the CH model with λh = 0.6, compared to those predicted

by scale variation.

Our analysis of the CH approach has allowed us to determine that αs is an appropriate

expansion parameter for non-hadronic observables, while a slightly larger parameter, αs/λh,

with λh ' 0.6, appears to be more appropriate for hadronic observables.
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Figure 18. Posterior distribution for the remainder ∆k (blue solid) for the pp → H via gluon

fusion process at
√
S = 8 TeV with the CH model, 68% DoB interval (blue fill), 95% DoB interval

(light-blue fill), scale-variation interval (red solid).

Armed with the determination of these expansion parameters from the global survey,

we have then compared the performances of the scale-variation and the CH Bayesian ap-

proaches in the estimation of the MHOUs for a set of benchmark observables of particular

interest for LHC physics, namely the production of electroweak vector bosons, top-antitop

pairs and Higgs in proton-proton collisions. The two approaches perform similarly in esti-

mating, to a given heuristic confidence level for the scale-variation approach or to a given

credibility level for the Bayesian CH approach, the MHOUs for these observables, provided

that a rescaling factor larger than two is used for scale variation. More importantly, how-

ever, the CH approach additionally provides a full probability density distribution for the

missing higher orders uncertainty. This probability density can then be used to combine in

a meaningful way the MHOU with uncertainties of different origin, e.g. experimental ones.

We conclude by commenting on two possible avenues for further development. First, in

this paper, we have determined the optimal expansion parameter for the perturbative series

in the CH approach by performing a frequentist analysis of a set of known observables. One

could envisage replacing this analysis with an additional prior on the expansion parameter.

Second, the CH model has been formulated as an as generic Bayesian approach as possible,

meant to be applied to a wide and open-ended class of perturbative observables. Instead,

one could envisage developing other, more refined Bayesian models, crafted to work on

a more restricted and more uniform class of observables. In such a case, more specific

knowledge about the perturbative behaviour of the observables would be encoded in the

priors of the model, and a trade-off would exist between this amount of information and

the model’s eventual predictivity. We leave exploration of these avenues to further work.
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A Numerical values of perturbative coefficients

The observables used in our analyses are listed in table 5 and table 6.

Table 5 gives the perturbative coefficients for non-hadronic observables, i.e. without

hadrons in the initial state. They are given in the form

Ok(Q,µr) =

k∑
n=l

αns (µr)cn(Q,µr) , (A.1)

where µr is the renormalisation scale of the strong coupling, which we choose equal to the

typical scale of the process, Q, when calculating the coefficients given in the table. We

recall that for this class of observables, the coefficients c0 are not used in the Bayesian

analysis.

Hadronic observables (i.e. with hadrons in the initial state) are written as

Ok(Q,µr, µf ) =

k∑
n=l

αns (µr)hn(µr, µf ) ≡
k∑
n=l

αns (µr)L(µf )⊗ Cn(Q,µr, µf ) . (A.2)

We present in table 6, setting µr = µf = Q, the coefficients obtained after convolution

with the parton-parton flux, as explained in section 2.3.1. Finally, in table 7, we list the

cuts applied in the numerical computations of hadronic observables.

B Hadronic observables: convoluted coefficients vs. dominant Mellin

moment method

Our preferred extension of the CH model to hadronic observables is the one based on the

convoluted coefficients (see section 2.3.1), due to its ability to capture effectively the full

complexity of a process with initial-state hadrons and multiple partonic channels. However,

it is instructive to compare its results with those of the Mellin-moment approach described

in section 2.3.1. In this appendix, we review two processes: Higgs production in gluon

fusion, where, as we will see, the Mellin method and the coefficient one return equivalent

results, and the Drell-Yan process, where the Mellin method fails to capture the essence of

the process.
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Non-Hadronic observables
Parameters Coefficients

Observable Q(GeV) αs(Q) l cl cl+1 cl+2 cl+3 cl+4

R = σ(e+e−→hadr)
σ0(e+e−→hadr)

91.19 0.118 0 1 0.318 0.143 −0.413

Bjorken sum rule 91.19 0.118 0 1 −0.212 −0.238 −0.274

GLS sum rule 91.19 0.118 0 6. −1.910 −1.773 −1.117
Γ(b→ceν̄e)
Γ0(b→ceν̄e) 4.6 0.22 0 1 −0.566 −1.408

Γ(Z → hadr)[GeV] 91.19 0.118 0 1.674 0.533 0.130 −0.837 −1.173
Γ(Z→bb̄)

Γ0(Z→bb̄)|mb=0
91.19 0.118 0 0.997 0.315 −0.156 −0.796

Γ(H → gg) [MeV] 125 0.113 2 14.43 82.28 223.6 181.6

Γ(H → bb̄)|mb=0[MeV] 125 0.113 0 1.850 3.338 5.465 2.492 −15.685

Γ(H → γγ) [KeV] 125 0.113 0 9.379 1.494 0.627

〈3-jets Thrust〉 91.19 0.118 1 0.030 0.149 0.686

〈3-jets Heavy jet mass〉 91.19 0.118 1 0.030 0.069 0.141

〈3-jets Wide jet broadening〉 91.19 0.118 1 0.054 0.098 0.166

〈3-jets Total jet broadening〉 91.19 0.118 1 0.054 0.356 1.219

〈3-jets C parameter〉 91.19 0.118 1 0.387 1.933 8.731

〈3-to-2 jet transition〉 91.19 0.118 1 0.013 0.029 0.044

γ
(+)
ns (N = 2) 91.19 0.118 1 0.283 0.206 0.081

γqq(N = 2) 91.19 0.118 1 0.283 0.143 −0.068

γqg(N = 2) 91.19 0.118 1 −0.265 −0.239 0.058

Table 5. QCD perturbative corrections for observables without initial-state hadrons. The co-

efficients cn are defined by Ok =
∑k
n=l α

n
s cn, where Ok is an observable computed at kth order

in perturbative QCD. Notice that l = 0 coefficients are not used in the Bayesian non-hadronic

analysis.

B.1 Higgs production in gluon fusion at the LHC

This process is characterised by the dominance at every perturbative order of the gluon-

gluon channel. The other partonic channels, which only enter at NLO and at NNLO order,

turn out to only give subleading contributions. We calculate the dominant moment of the

Higgs coefficient functions in Mellin space given in [41] using a saddle-point approxima-

tion [15, 16]. We find that N0 = 2 gives the best approximation of the full Mellin inversion

integral. We then compare the MHOUs obtained following this procedure with those from

the convoluted coefficients method in table 8a. We see that the behaviour of the dominant

Mellin moments at the various perturbative orders is very similar to the one of the coeffi-

cients extracted after the convolution with the PDFs. Indeed, as shown also in figure 19,

the resulting uncertainty intervals in the two approaches agree very well.

B.2 The Drell-Yan process at the LHC

The Drell-Yan process for Z production at the LHC is dominated by the qq̄ channel both

at LO (where it is the only channel) and at NLO, where also the quark-gluon channel starts

to contribute. At NNLO, also the gluon-gluon channel opens up. It is known that the total
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Hadronic observables
Parameters Coefficients

Observable (LHC,
√
S = 8 TeV) Q αs(Q) l hl hl+1 hl+2

σ(pp→ H) [pb] 125 0.115 2 424. 5072. 29097.

σ(pp→ bb̄→ H) 5FS [pb] 125 0.113 0 0.402 −0.854 −4.951

σ(pp→ Z∗ +X → ZH +X) [pb] 216.2 0.105 0 0.332 0.587 2.734

σ(pp→W ∗ +X →WH +X) [pb] 205.6 0.105 0 0.626 1.108 1.834

σ(pp→ bb̄) [µb] 20 0.155 2 5371. 31190.

σ(pp→ tt̄) [pb] 173.3 0.108 2 12449. 55769. 195299.

σ(pp→ Z +X → e+e− [nb] 91.19 0.119 0 0.500 0.486 −0.164

σ(pp→ Z + j) [nb] 91.19 0.119 1 1.186 2.831

σ(pp→ Z + 2j) [nb] 91.19 0.119 2 3.659 5.138

σ(pp→ ZZ) [fb] 182.4 0.108 0 4.949 14.311

σ(pp→W− +X → e− + νe +X) [nb] 80.4 0.121 0 2.241 2.108 −2.074

σ(pp→W+ +X → e+ + ν̄e +X) [nb] 80.4 0.121 0 3.328 3.212 −0.922

σ(pp→W+ + j) [nb] 80.4 0.121 1 6.182 17.547

σ(pp→W− + j) [nb] 80.4 0.121 1 4.385 11.573

σ(pp→W+ + 2j) [nb] 80.4 0.121 2 19.450 28.868

σ(pp→W− + 2j) [nb] 80.4 0.121 2 12.993 20.632

σ(pp→W+W−) [pb] 160.8 0.109 0 0.175 0.742

Table 6. QCD perturbative corrections for observables with initial-state hadrons. The coefficients

hn are defined by Ok =
∑k
n=l α

n
shn ≡

∑k
n=l α

n
sL ⊗ Cn, where Ok is an observable computed at

kth order in perturbative QCD. All observables have been computed for the LHC (proton-proton

collisions at
√
S = 8 TeV) with the cuts given in table 7.

net effect of the new channels on the total NNLO contribution is PDF-dependent, due to

the uncertainties of the gluon PDFs. In particular, the NNLO contribution can change

sign according to the PDF set used.

In our case, using the NNLO NNPDF 2.3 set [37], it is negative due to the predominance

of the negative quark-gluon channel at this order. On the other hand, the Mellin-space

coefficient function for the qq̄ channel, which we use in the analysis, is always positive.

Hence, it is not able to capture the complex pattern of the perturbative expansion for

this process. Indeed, we see in table 8b and in figure 20 that, starting from NLO, the

uncertainty interval obtained with the Mellin method is systematically larger than the one

obtained with the standard coefficient-based one.

One could in principle work around this issue by performing a Mellin analysis for each

channel separately. However, to recombine the different uncertainties in order to get a single

band for the complete cross section would then require the knowledge of the weight of each

channel. This, in turn, requires the use of the PDFs to determine the corresponding parton

fluxes, introducing a dependence on long-range physics into the Mellin moment method,

and therefore spoiling its main advantage.
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Hadronic analysis cuts
Cut Description

0 ≤ mmin
34 ≤ 14 TeV Invariant mass of particles 3 and 4 in the process

0 ≤ mmin
34 ≤ 14 TeV Invariant mass of particles 5 and 6 in the process

mT
34 ≥ 0 GeV Transverse mass of particles 3 and 4 in the process

Anti-kT [40], R = 0.4 Jet algorithm

pjet
T ≥ 15 GeV Jet transverse momentum pT

0 ≤ |ηjet| ≤ 3.5 Jet pseudorapidity

plept
T ≥ 20 GeV Lepton transverse momentum

0 ≤ |ηlept| ≤ 2.5 Lepton pseudorapidity

pmiss
T ≥ 25 GeV Missing (neutrinos) transverse momentum

∆Rjj > 0.5 Jet-jet separation ∆Rjj =
√

∆η2
jj + ∆φ2

jj

∆Rjl > 0.4 Jet-lepton ∆Rjl =
√

∆η2
jl + ∆φ2

jl

∆Rll > 0.4 Lepton-lepton ∆Rll =
√

∆η2
ll + ∆φ2

ll

∆ηjj > 0 Jet-jet pseudorapidity separation

Table 7. Cuts used in the hadronic analysis.

pp→ H
Order σk[pb] C(N0 = 2) CH Mellin, 68% CH Mellin, 95% CH, 68% CH, 95%

k = 2 5.6 1 ±3.35 ±21.46 ±3.35 ±21.46

k = 3 13.3 12.12 ±4.54 ±11.48 ±4.51 ±11.42

k = 4 18.38 71.19 ±3.70 ±6.99 ±3.52 ±6.65

(a) MHOUs for Higgs production in proton-proton collisions via gluon fusion. The perturbative series of

the observable at the order k is defined as σk(pp→ H) =
∑k

n=2 α
n
s hn.

pp→ Z
Order σk C(N0 = 2) CH Mellin, 68% CH Mellin, 95% CH, 68% CH, 95%

k = 0 0.499 1 ±0.155 ±0.991 ±0.155 ±0.991

k = 1 0.557 2.92 ±0.029 ±0.074 ±0.020 ±0.051

k = 2 0.555 7.53 ±0.014 ±0.027 ±0.007 ±0.013

(b) MHOUs for Z production in the Drell-Yan process. The perturbative series of the observable at the

order k is defined as σk(pp→ Z → e+e−) =
∑k

n=0 α
n
s hn.

Table 8. Results for the analysis of Higgs production in proton-proton collisions and of Drell-

Yan production of a Z boson at
√
S = 8 TeV. We quote the perturbative order k at which the

observable is calculated, the central value for the theoretical prediction at that order, the value of

the coefficient function at the dominant Mellin moment N0 and the MHOs uncertainty intervals

computed using the CH model at 68% DoB and 95% DoB with both the Mellin moment method

and the coefficient-based approach.
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Figure 19. Size of the MHO uncertainty intervals at LO, NLO and NNLO for the pp → H via

gluon fusion process at
√
S = 8 TeV. Predictions of the Mellin-CH model with λh = 0.6, compared

to those of the standard CH method and of the scale-variation approach.
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Figure 20. Size of the MHO uncertainty intervals at LO, NLO and NNLO for the pp→ Z process

at
√
S = 8 TeV. Predictions of the Mellin-CH model with λh = 0.6, compared to those of the

standard CH method and of the scale-variation approach.

C Statistical uncertainty in the determination of λ

In this appendix, we detail the procedure through which we determine the uncertainty on

our determination of the rescaling factor λ (λh) of the expansion parameter in the CH

approach. We recall that the optimal value for λ is determined by comparing, for the

CH model with a given value of λ, the measured success rate and the value of the Degree

of Belief given as an input. The success rate is defined as the ratio of the number of

higher order results included in the predicted uncertainty intervals and the total number

of observables analysed.
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What we need to establish is the statistical uncertainty on the measured success rate,

resulting from the finite size of the sample of observables that we employ in our survey.

For this purpose, we follow the procedure suggested in [42]. It relies on the assumption

that the measured success rate, s/n, where s is the number of successes and n the size

of the observables’ sample, is a point estimator for p, the real proportion of successes in

the underlying population. The likelihood of observing a success rate value s/n, given the

true value p, is then proportional to ps(1−p)n−s, and upon normalisation over the interval

0 < p < 1, it can be written as a Beta distribution,

B(s+ 1, n− s+ 1) =
(n+ 1)!

s!(n− s)!
ps(1− p)n−s . (C.1)

If we express our ignorance on the value of p by means of a Bayes-Laplace uniform prior,

Ppr(p) = 1 over the interval 0 < p < 1, we can, upon application of Bayes’ theorem, use the

normalised likelihood function (C.1) as a posterior probability distribution. We can then

define the lower and upper bounds, pl and pu, of an equal-tailed c% = 1 − α credibility

interval for p through the relations

pl∫
0

dpB(s+ 1, n− s+ 1) =
α

2
and

1∫
pu

dpB(s+ 1, n− s+ 1) =
α

2
, (C.2)

respectively.

A proper application of this procedure to our problem would require the evaluation,

for each value of λ and for each measured s/n rate, of the credibility interval [pl, pu] for a

given value of α. In practice, in order to simplify both the calculation and the graphical

representation of this uncertainty, we determine a 68.3%-credible interval for an ideal curve

where success rate = requested DoB. This is the interval that is represented as a grey band

in the right hand plots of figures 3 and 4. As long as the actual curves do not differ too

much from this ideal one, one can easily gauge the size of the uncertainty, and therefore to

what extent two curves obtained with two values of λ are, or are not, significantly different.
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