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Abstract

We have computed the two-loop, electroweak corrections to the production of
a light and a heavy neutral, scalar Higgs-boson through the important gluon
fusion process in the Two-Higgs-Doublet Model. We provide our results in
various renormalization schemes for different scenarios and benchmark points,
which will be valuable for experimental studies at the LHC. We describe the
technicalities of our two-loop calculation and augment it by a phenomenolog-
ical discussion. Our results are also applicable to the gluonic neutral, scalar
Higgs-boson decays.
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1 Introduction

The Higgs boson, which has been discovered at the Large Hadron Collider (LHC) [1]
with a mass of Mh = 125.09 ± 0.21 ± 0.11 GeV [2], could be part of an extended Higgs
sector. One of the simplest extensions of the Standard Model (SM) is the Two-Higgs-
Doublet Model (2HDM), where an extra scalar doublet is added. Such an extension
was introduced in Ref. [3] to provide an additional source of CP-violation, which may
contribute to explain the observed matter–anti-matter asymmetry of the Universe. Special
choices of the parameters, for example in the Inert Model, can also provide a dark matter
candidate [4]. Thus, the 2HDM can assist to address problems which are not solved within
the SM. Phenomenological studies of the 2HDM have been performed by the ATLAS [5, 6]
and CMS [7] collaborations. Several benchmark scenarios for the new parameters, which
arise due to the addition of a second scalar doublet, have been collected by the LHC Higgs
Cross Section Working Group in Ref. [8].

Extensions of the SM can strongly modify Higgs-boson production and decay pro-
cesses, which allows to perform exclusion studies for the new parameters of such model
extensions. This requires precise theoretical predictions. For example, the addition of
a sequential fourth generation of heavy fermions increases the leading order (LO) cross
section of the Higgs-boson production process through gluon fusion already by about a
factor of nine [9]. The next-to-leading order (NLO) electroweak corrections in this model
have been computed in Refs. [10, 11], which have helped to exclude this model at the
LHC.

In the CP-conserving 2HDM, there are two neutral, scalar Higgs bosons Hl and Hh.
One of them is considered to be the SM-like Higgs boson, which has already been dis-
covered at the LHC. In addition, there are two charged Higgs bosons H± as well as a
pseudoscalar Higgs boson Ha. A possible set of new free parameters of the extended
Higgs sector are the masses of the new Higgs bosons, MHh

, MH± , MHa as well as the soft
Z2-breaking scale Msb and two mixing angles α and β. The mass of the light Higgs boson
is here fixed to MHl

≡Mh.
Various important Higgs-boson production and decay processes have already been

studied at NLO in the 2HDM. For example, NLO electroweak corrections to Higgs-boson
production in Higgs strahlung and through vector-boson fusion have been determined
in the 2HDM in Refs. [12, 13]. The NLO electroweak corrections to the decay of the
light Higgs boson of the 2HDM into four fermions have been computed in Ref. [14]. The
dominant Higgs-boson production mechanism at the LHC proceeds via gluon fusion. Its
precise theoretical knowledge is thus a mandatory task. In the SM, the complete NLO
electroweak corrections for the most recent value of the top-quark massmt = 173.1 GeV [2]
amount to 5.1% [15, 16]. One can thus expect that the electroweak corrections are also
sizable in extensions of the SM. In this work, we will contribute to the effort of studying the
2HDM by computing the two-loop electroweak corrections to the production of neutral,
scalar Higgs bosons in gluon fusion. On the one hand, it is important to know the
NLO electroweak corrections in the 2HDM to Higgs-boson production in gluon fusion for
the already discovered Higgs boson. First results in the special case of the alignment
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limit (cos (α− β) = 0) have already been presented in Ref. [12]. In addition to the
alignment limit, we consider the more complicated, general case of cos (α− β) 6= 0 in
this work. On the other hand, it is important to know the NLO electroweak corrections
for the production of the heavy, neutral, scalar Higgs boson Hh of the 2HDM, which we
present too. We also discuss the technicalities and obstacles which need to be overcome
in order to accomplish this calculation. The results of our computations will be provided
in different renormalization schemes for the mixing angles α and β.

The structure of this paper is as follows: In Section 2, we introduce the model in which
we perform our calculation. Section 3 describes the different renormalization schemes
which we use for the mixing angles. In Section 4, we discuss the computational techniques
which have been used in order to accomplish this aim; and in Section 5 we provide the
numerical results. Finally, we close with our summary and conclusion in Section 6. In
the appendices, we provide supplementary information on the scale dependence arising
from the MS renormalization of the mixing angles α and β as well as on the perturbative
behaviour of the coupling constants of the Higgs potential.

2 The model

We discuss the 2HDM extension of the SM, which has two complex, scalar doublet fields
Φi, i = 1, 2. In the generic basis, they are parametrized through

Φi =

(
φ+
i

1√
2
(vi + ρi + iηi)

)
, (1)

where the vi are the vacuum expectation values (vev). We consider the 2HDM with a
discrete Z2 symmetry under the transformation Φ1 → −Φ1, Φ2 → Φ2 of the two Higgs
doublets. This Z2 symmetry is important, since it has also implications on the Yukawa sec-
tor of the 2HDM where it suppresses tree-level flavour-changing neutral currents (FCNC),
which are experimentally unobserved. Before coming to the Yukawa sector, let us com-
plete the discussion of the Higgs potential. The Z2 symmetry requirement also reduces
the number of terms in the potential. However, we allow for a soft-breaking term [17],
which does not induce the FCNC problem. With these constraints, the Higgs potential
has the following form

V (Φ1,Φ2) = m2
1Φ
†
1Φ1 +m2

2Φ
†
2Φ2 −m2

12

(
Φ†1Φ2 + Φ†2Φ1

)
+

λ1
2

(
Φ†1Φ1

)2
+
λ2
2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
λ5
2

[(
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2]
. (2)

The five couplings λ1,...,λ5 and the soft-breaking parameter m12 are taken to be real as
well as the two masses m1 and m2.
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For physical applications, we work in the physical basis, where the sector of the po-
tential that is quadratic in the scalar fields is diagonalized. This leads to the introduction
of the mass eigenstates through a change of basis(

ρ1
ρ2

)
= R(α)

(
Hh

Hl

)
,

(
φ±1
φ±2

)
= R(β)

(
G±

H±

)
,

(
η1
η2

)
= R(β)

(
G0

Ha

)
. (3)

Here, the symbols Hl, Hh, H± ≡ Hc and Ha are the fields of the physical light, heavy,
charged and pseudoscalar Higgs bosons, which receive the masses MHl

, MHh
, MHc and

MHa , while G0 and G± are the neutral and charged would-be Goldstone bosons.
The rotation matrix that performs the diagonalization reads

R(γ) =

(
cos γ − sin γ
sin γ cos γ

)
, with γ = α or β. (4)

The five couplings in the potential can then be expressed in terms of the Higgs-boson
masses and the mixing angles. The explicit formulae are given in Eqs. (35)-(39) of Ap-
pendix B.

Finally, we also introduce the Higgs basis [18] in which only the neutral component of
one of the two Higgs doublets, say the first one, acquires a vev. This is achieved by the
linear combination (

Φa

Φb

)
= R−1(β)

(
Φ1

Φ2

)
. (5)

Expressing the fields Φa,b in terms of the fields in the physical basis leads to

Φa =

(
G+

1√
2
(v + Ĥ + iG0)

)
, Φb =

(
H+

1√
2
(H̃ + iHa)

)
, (6)

where we defined the neutral Higgs-boson fields through the following linear combinations(
H̃

Ĥ

)
= R−1(α− β)

(
Hl

Hh

)
. (7)

It becomes apparent that only the neutral component of Φa acquires a vev, while in Φb it
does not. We introduce the abbreviations cαβ = cos(α− β) and sαβ = sin(α− β) as well
as the vev v = (v21 + v22)1/2. The choice of phases in the definition of the two doublets Φi

in Eq. (1) leads to sαβ = −
√

1− c2αβ. An additional property of the Higgs basis is that

the Goldstone bosons are all contained in one doublet, Φa. Note, that the Higgs basis
was particularly valuable in Ref. [12] in order to show that an MS renormalization of the
mixing angle β can become gauge dependent when using popular tadpole renormalization
schemes. In the case of the alignment limit

cαβ → 0, sαβ → −1, (8)
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the first doublet (Φa) becomes SM-like and Ĥ is the light Higgs boson Hl (Ĥ ≡ Hl) with
SM-like couplings to fermions and gauge bosons. All the other new physical Higgs-boson
fields (H±, H̃ ≡ −Hh, Ha) are in the second doublet Φb. As a result, there is no mixing
between fields from one doublet with those of the other doublet in the alignment limit.
Vice versa, if sαβ → 0 (and cαβ → 1) the heavy Higgs boson Hh has SM-like couplings.

In order to give masses to the fermions in the 2HDM, one has different options to
construct Yukawa interactions between the fermionic and scalar fields. In particular, one
distinguishes four different types of 2HDM Yukawa terms. In type I, only Φ2 couples to
fermions. In type II, the down-type quarks as well as the leptons couple to Φ1, while the
up-type quarks couple to Φ2. Then, in type Y (or type flipped), Φ2 couples to up-type
quarks and charged leptons, while Φ1 couples to down-type quarks, and finally, we have
type X (or type lepton specific), where Φ2 couples to quarks, while Φ1 couples to charged
leptons. Within this work we focus on type II. This corresponds to the configuration that
is realized in the Minimal Supersymmetric SM. As already mentioned in the beginning of
this section, we impose a discrete Z2 symmetry in order to avoid tree-level FCNC [19].
For the type II 2HDM, down-type quarks and charged leptons need to be odd under this
Z2 transformation, i.e. Φ1 → −Φ1, dR → −dR, `R → −`R, while all other fields remain
unchanged. Here, the fields dR and `R are the right-handed, down-type quarks and the
right-handed charged leptons. All fermions except for the top-quark are taken to be
massless such that our results are valid for all types of 2HDM Yukawa terms. This is only
justified for small values of tβ. Furthermore, we neglect flavour mixing in the following.

As new input parameters of the extended Higgs sector, we have the masses of the
heavy, charged and pseudoscalar Higgs bosons

MHh
, MHc , MHa

as well as the soft-breaking scale

M2
sb =

m2
12

cos β sin β
(9)

and the mixing angles α and β, which we express through

cαβ and tβ = tan β =
v2
v1
.

Several limits of the new parameters can be defined. Beside the already mentioned
alignment limit, the decoupling limit will be studied in this work. In this limit, not only
cαβ is equal to zero, but in addition, all new mass scales of the 2HDM are much larger
than the electroweak scale [20, 8].

3 Renormalization of the mixing angles α and β

In this section, we consider different renormalization schemes for the mixing angles α and
β. We distinguish the MS renormalization, which leads to scale-dependent amplitudes,
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and the on-shell, p∗ as well as two process-dependent schemes. The latter guarantee scale-
independent amplitudes. In the process considered in this work, the parameter Msb does
not enter at LO. Thus, it does not require renormalization unless the running is taken
into account in the MS renormalization scheme.

In Section 5, we will show numerical results for these renormalization schemes. Having
different renormalization schemes at hand can be valuable in order to estimate the residual
uncertainty due to unknown higher order corrections.

MS renormalization scheme

An MS renormalization of the mixing angles α and β has been defined in Ref. [12]. Here,
the MS counterterm δβMS is defined at the τ−Ha−τ vertex, and the MS counterterm δαMS

is defined at the τ−Hl−τ vertex. The counterterms δαMS and δβMS are required to render
all amplitudes finite. The treatment of tadpoles requires special care when using an MS
renormalization of the mixing angles α and β in order to guarantee gauge-independent
amplitudes. The tadpoles have been treated in the FJ tadpole scheme, which has been
introduced by Fleischer and Jegerlehner for the SM in Ref. [21] and which was extended
for the 2HDM, and also for a general Higgs sector, in Ref. [22] and Ref. [12]. In the SM,
the FJ tadpole scheme corresponds to the βt scheme of Ref. [23]. In this approach, the
tadpole contributions are not absorbed into bare physical parameters, which intrinsically
assures gauge-independent physical counterterms. A renormalization of the soft-breaking
scale Msb in the MS scheme at the Hc−Hh−Hc vertex was introduced in Ref. [12]. For an
MS renormalization of Msb see also Ref. [24]. At next-to-leading order, the counterterms
δα and δβ of the 2HDM can be obtained from the off-diagonal elements of the field-
renormalization constants of the Higgs- and Goldstone-boson fields [25]. In particular, for
a gauge-independent MS renormalization, this relation reads

δαMS =
δZMS

HhHl
− δZMS

HlHh

4
, δβMS =

δZMS
G0Ha

− δZMS
HaG0

4
, (10)

where the Z-factors are defined by(
Hh,B

Hl,B

)
=

(
1 + 1

2
δZHhHh

1
2
δZHhHl

1
2
δZHlHh

1 + 1
2
δZHlHl

)(
Hh

Hl

)
, (11)(

G0,B

Ha,B

)
=

(
1 + 1

2
δZG0G0

1
2
δZG0Ha

1
2
δZHaG0 1 + 1

2
δZHaHa

)(
G0

Ha

)
, (12)

where the subscript B denotes a bare field. For the renormalization conditions of the
Z-factors we refer to Ref. [12].

The choice of an MS renormalization leads to scale-dependent renormalized ampli-
tudes. In order to account for the different scales in the new Higgs sector, we use the
average

µ0 =


MHl

+MHh
+MHa + 2MHc +Msb

6
, if Msb 6= 0

MHl
+MHh

+MHa + 2MHc

5
, if Msb = 0

(13)
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as a central renormalization scale, see Ref. [14] for a similar scale choice.
In addition to the explicit scale dependence of the amplitude, the renormalization scale

dependence, i.e. the running of the parameters, can be taken into account by solving a
system of coupled differential equations:

∂α

∂ ln (µ2)
= Bα (α(µ), β(µ),Msb(µ)) ,

∂β

∂ ln (µ2)
= Bβ (α(µ), β(µ),Msb(µ)) , (14)

∂Msb

∂ ln (µ2)
= BMsb

(α(µ), β(µ),Msb(µ)) .

The explicit expression for the functions Bα, Bβ and BMsb
can directly be obtained from

the pole part of the corresponding counterterms and are lengthy in the non-alignment
limit.

In the MS scheme the explicit values of the input parameter cαβ and tβ need to be
defined at a given scale µ. We use two different choices of the scale at which we define
these values: the averaged scale µ0 of Eq. (13) as well as the vacuum expectation value
v. For the latter choice we run the values from the scale v to the scale µ0 with the help
of the renormalization group equations (RGE) (14). We perform the scale variation µ0/2
and 2µ0 and run the values of cαβ and tβ to these corresponding scales. All results in the
MS scheme in Section 5 are presented with the parameters defined at µ0. In Appendix C
we also compare the different MS schemes for the M∗ benchmark scenarios, which will be
introduced in Section 5.

On-shell renormalization scheme

We have also considered the on-shell (OS) scheme, where the renormalized mixing angles
are defined such that they diagonalize the radiatively corrected Higgs mass matrices in-
troduced in Section 2. This connects the counterterms of the mixing angles α and β to
the off-diagonal terms of the on-shell two-point functions of the CP-even Higgs bosons
and of the CP-odd Higgs boson and the neutral Goldstone boson, respectively. The mix-
ing two-point functions are evaluated on-shell, which guarantees scale independence of
the rotation matrices in Eq. (4), see Ref. [26]. However, using finite parts of the mixing
two-point functions to define the renormalization constants of α and β leads to gauge-
dependent renormalization constants in addition to the gauge-dependent tadpole terms
discussed in Ref. [12]. The problem has been overcome in Ref. [22] using the pinch tech-
nique [26, 27, 28]. Recently, it has been treated in a more general framework in Ref. [13]
within the background field method (BFM), leading to the same result. In the pinch

technique the two-point function Σ̃SS′ (p
2) of two scalars S and S ′ for the Rξ-gauge with

ξ = 1 is given by
Σ̃SS′

(
p2
)

= Σ1PI
SS′

(
p2
)

+ Σadd
SS′

(
p2
)
, (15)
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where Σ1PI
SS′ (p

2) is the one-particle irreducible (1PI) mixing two-point function. In the
2HDM the additional contribution Σadd

SS′ (p
2) reads [22]

Σadd
HhHl

(
p2
)

=
g2sαβcαβ
32π2c2W

(
p2 − M2

Hh
+M2

Hl

2

){
B0

(
p2;M2

Z ,M
2
Z

)
−B0

(
p2;M2

Z ,M
2
Ha

)
+2c2W

[
B0

(
p2;M2

W ,M
2
W

)
−B0

(
p2;M2

W ,M
2
Hc

)] }
, (16)

Σadd
G0Ha

(
p2
)

=
g2sαβcαβ
32π2c2W

(
p2 − M2

Ha

2

){
B0

(
p2;M2

Z ,M
2
Hl

)
−B0

(
p2;M2

Z ,M
2
Hh

)}
,

with the cosine of the weak mixing angle cW , the gauge coupling g and the one-loop,
scalar, two-point integral B0 [29].

The counterterms to the mixing angles are then given by

δα =
Re
[
Σ̃HhHl

(
M2

Hh

)
+ Σ̃HhHl

(
M2

Hl

)
+ 2tHhHl

]
2
(
M2

Hh
−M2

Hl

) ,

δβ = −
Re
[
Σ̃G0Ha (0) + Σ̃G0Ha

(
M2

Ha

)
+ 2tG0Ha

]
2M2

Ha

,

(17)

where the tadpole counterterms tHhHl
and tG0Ha are given in the Appendix of Ref. [12].

In an alternative on-shell scheme, the counterterm δβ can also be defined through the
charged Higgs-boson–Goldstone-boson mixing two-point functions.

These schemes can be expected to produce small perturbative corrections to phys-
ical observables, because the finite counterterms of the mixing angles α and β cancel
large terms originating from the Z-factors of the neutral, scalar sector and in the pseu-
doscalar/charged sector as mentioned in Ref. [13].

p∗ renormalization scheme

The p∗ scheme is derived from the same mixing two-point functions of Eq. (15), but
computed at the external momentum

(p∗)2 =
M2

S +M2
S′

2
, (18)

such that the rotation matrices in Eq. (4) also remain scale-independent, see Ref. [26].
The additional terms in Eqs. (16) vanish and the two-point functions in Eq. (15) are equal
to the 1PI two-point functions in the Rξ-gauge for ξ = 1. This results in the counterterms
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Hh

τ−

τ+

↔ i emτ

2 sW MW

(tβ sαβ − cαβ)
Ha

τ−

τ+

↔ emτ

2 sW MW

γ5 tβ

Hh

Z

Z

↔ i e

sW cW

MW

cW
cαβ g

µν

Figure 1: The vertices that are used for the determination of the counterterms δβ, δα
or δφ with φ = α − β are shown with their corresponding Feynman rules. The symbol e
is the elementary electric charge, MW (mτ ) is the mass of the W boson (τ lepton) and
sW =

√
1− c2W .

of the mixing angles

δα =

Re

[
Σ̃HhHl

(
M2

Hh
+M2

Hl

2

)
+ tHhHl

]
M2

Hh
−M2

Hl

=

Re

[
ΣHhHl

(
M2

Hh
+M2

Hl

2

)
+ tHhHl

]
ξ=1

M2
Hh
−M2

Hl

,

δβ = −
Re

[
Σ̃G0Ha

(
M2

Ha

2

)
+ tG0Ha

]
M2

Ha

= −
Re

[
ΣG0Ha

(
M2

Ha

2

)
+ tG0Ha

]
ξ=1

M2
Ha

.

(19)

Process-dependent renormalization scheme 1

A process-dependent renormalization of the parameters α and β can be obtained by
imposing renormalization conditions on the physical decay processes Hh → τ+τ− and
Ha → τ+τ− [22]. The two counterterms δα and δβ are fixed by the requirement that
their NLO corrected partial decay width ΓNLO

weak, which contains weak corrections only, is
equal to the LO partial decay width ΓLO, i.e.

ΓNLO

weak(Hh → τ+τ−) = ΓLO(Hh → τ+τ−) and ΓNLO

weak(Ha → τ+τ−) = ΓLO(Ha → τ+τ−).

Since both vertices (τ−Hh−τ and τ−Ha−τ) depend on tβ, see Fig. 1 for illustration, the
determination of both counterterms δα and δβ requires the solution of a linear system of
equations. First, δβ can be determined from the τ−Ha−τ vertex, which depends only on
tβ. Then, the result needs to be inserted into the τ −Hh− τ vertex for the determination
of δα. We refer to this scheme as proc1 in the following.
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If the additional 2HDM particles are discovered, one can expect that these two pro-
cesses can be measured precisely due to the leptonic final states. Therefore, they are in
principle well suited for the determination of the parameters α and β. Due to the choice of
the renormalization condition, no higher order electroweak corrections are present in the
determination of α and β. Process-dependent renormalization may lead to large pertur-
bative corrections, since the higher order corrections to the processes used for renormal-
ization will appear in all other processes. Such a behaviour was, for example, observed for
the decay process H± → W±Hl in Ref. [22]. For light and heavy Higgs-boson production
through gluon fusion, however, process-dependent renormalization leads to results similar
to those obtained in the OS or p∗ scheme, as we will see in Section 5.

Process-dependent renormalization scheme 2

Unlike the previously discussed physical renormalization conditions, which rely on the
partial decay widths of two leptonic Higgs-boson decays, we consider a process dependent
renormalization, which is based on the two vertices τ − Ha − τ and Z − Hh − Z in
the following. Studying a potential decay of a heavy Higgs boson into two Z-bosons is
experimentally less clean, since the unstable Z-bosons can further decay into a variety
of other particles. In addition, its LO contribution is very small in physically relevant
scenarios close to the alignment limit. Nevertheless, it turns out, as we will see in Section 5,
that in the calculation of the processes g + g → Hl and g + g → Hh, this scheme leads to
higher order corrections of moderate size.

As renormalization condition, we require that the purely weak corrected τ − Ha − τ
vertex is equal to its leading order value in order to fix the counterterm δβ. We impose
a similar condition on the Z − Hh − Z vertex in order to fix the counterterm δφ. Note
that due to our choice of parameters, tβ and cαβ, it is more convenient to renormalize
φ = α−β rather than α. The Z−Hh−Z vertex is proportional to gµν at LO, see Fig. 1.
Computing higher order corrections to this vertex leads to a richer tensor structure,
which also contains combinations of the four-momenta of the external Z-bosons. As
renormalization condition for the counterterm δφ, we require that the coefficient in front
of gµν of the Z − Hh − Z amplitude is equal to its leading order value similar to the
renormalization of the electric charge in QED. The coefficient in front of gµν can be
extracted from the amplitude by using a suitable projector. This scheme will be called
proc2 in the following. The use of the vertices τ − Ha − τ and Z − Hh − Z has the
advantage that one has a separate condition for each of the two counterterms δβ and δφ,
i.e. the value of δφ is not influenced by the renormalization condition for δβ, contrary to
the previously discussed proc1 scheme.
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4 Calculation

The partonic, leading order cross section for the Higgs-boson production process through
gluon fusion reads

σLO

2HDM(g + g → H) =
GFM

2
Hα

2
s

128
√

2π
|ALO

H |2 δ(s−M2
H)

≡ σ̂LOM2
Hδ(s−M2

H), (20)

where s is the square of the sum of the external gluon (g) momenta, αs is the strong
coupling constant and GF is the Fermi coupling constant. The leading order amplitude
ALO reads

ALO

H =
∑
q

c2HDM
H,q

1

τq

[
1 +

(
1− 1

τq

)
f(τq)

]
with τq =

M2
H

4M2
q

, (21)

where the index q runs over all quark flavours and

f(τq) =


arcsin2√τq, if τq ≤ 1, i.e. q = t

−1
4

[
ln

(
1+
√

1−1/τq
1−
√

1−1/τq

)
− iπ

]2
, if τq > 1, i.e. q = u, d, s, c, b.

(22)

The symbol H in Eq. (20) stands for the external Higgs boson, which can be either the
light (H = Hl) or the heavy (H = Hh) neutral Higgs boson of the 2HDM; equally, MH is
the Higgs-boson mass, which can be either MH = MHl

or MH = MHh
. The symbol Mq

is the mass of the internal quark, which in general can be either the up (u), down (d),
strange (s), charm (c), bottom (b) or top (t) quark. The coefficient c2HDM

H,q in Eq. (21)
originates from the Higgs-boson–quark coupling and is in the 2HDM, type II different
for up- and down-type quarks and also different for the production of a light or a heavy,
neutral Higgs boson:

c2HDM
Hl,q

= cαβ/tβ − sαβ and c2HDM
Hh,q

= cαβ + sαβ/tβ for q ∈ {u, c, t}, (23)

c2HDM
Hl,q

= −cαβ tβ − sαβ and c2HDM
Hh,q

= cαβ − sαβ tβ for q ∈ {d, s, b}.

The production of the SM Higgs boson corresponds to the case where c2HDM
H,q is equal

to one. We consider only the top quark as massive and all other fermions as massless,
i.e. only the case q = t contributes to Eq. (20). In this case only c2HDM

Hl,t
or c2HDM

Hh,t
of

Eq. (23) contributes to Eq. (21). For simplicity we will drop the label t in the following,
i.e. c2HDM

Hl
≡ c2HDM

Hl,t
and c2HDM

Hh
≡ c2HDM

Hh,t
. In particular, c2HDM

Hl
of Eq. (23) becomes one, i.e.

SM-like, in the alignment limit given in Eq. (8). One can also find a combination of cαβ
and tβ such that c2HDM

H becomes arbitrary small or even zero. In this case, the two-loop,
electroweak corrected process becomes the true leading order process.

There are no real corrections which have to be determined when computing the NLO
electroweak corrections for this process. Consequently, one can straightforwardly apply
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the results for the electroweak percentage correction, which has been obtained for the
cross section of the production process g+ g → H in Eq. (20), to the partial decay width
of the process H → g + g. The partial decay width and the production cross section are
related by

ΓLO(H → g + g) =
8M3

H

π2
σ̂LO(g + g → H). (24)

The Feynman rules for the 2HDM of type II, which has been defined in Section 2, have
been produced in an automated way with the help of FeynRules [30]. The one- and two-
loop diagrams have been calculated with QGS, which is an extension of GraphShot [31]. It
generates the Feynman diagrams with QGRAF [32] and performs algebraic manipulations of
the amplitudes and loop integrals with the help of Form [33]. The program QGS performs
the standard Dirac algebra operations and projects the expressions onto form factors. In
addition, it removes reducible scalar products and uses integration-by-parts identities in
order to simplify tadpole contributions. Finally, it reduces the number of loop integrals
by means of symmetrization. Further details regarding these techniques can be found in
Ref. [16]. After these manipulations, one remains with a two-loop amplitude that requires
numerical evaluation, which is done with a Fortran code. In particular, the two-loop
integrals are evaluated in Feynman-parametric space with the help of a Fortran library.
For the numerical integral evaluation of the two-loop massive diagrams, the library uses
the methods of Ref. [34] for self-energies and of Refs. [16, 35, 36] for vertex functions.

Compared to the production of a light, neutral, SM-like Higgs boson Hl in gluon fu-
sion in the alignment limit, which has been addressed already briefly in Ref. [12], the
non-alignment limit case and the production of a heavy, neutral Higgs boson Hh is com-
putationally more involved. While the calculation of the integrals for the production of
the SM-like Higgs boson Hl in the alignment limit can be completely traced back to the
calculation of the pure SM case, which was discussed in Refs. [15, 16], new integral struc-
tures appear in the general case. They are generated by new diagrams, a sample of which
is shown in Fig. 2. The first diagram is non-planar and leads to a new rank 2 integral.
In the SM and in the alignment limit, this diagram only exists with two Z-bosons. The
same type of diagram exists for the W-bosons and the charged Higgs bosons (second
diagram of Fig. 2). Since different types of fermions appear in this diagram, it leads to
rank 3 integrals, and hence, the calculation becomes even more involved. In the SM, it
was possible to cancel the rank 3 integrals since there were fewer different bosonic masses
in the denominators. A new planar diagram, which appears in the general case of the
2HDM, is depicted at the rightmost side of Fig. 2. After performing the obvious reduction
as explained in Ref. [16], some diagrams lead to collinear divergent structures; the new
ones, not present in the alignment limit, are shown in Fig. 3. In particular, the second
non-planar diagram of Fig. 2 leads to the more complicated collinear structure depicted
in the second diagram of Fig. 3. More details regarding the cancellation of these new
collinear singularities are given in Section 4.1.

In Section 5, we provide numerical results for the NLO, electroweak corrections to the
production processes g+ g → Hl and g+ g → Hh for various 2HDM scenarios. We define
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Figure 2: Sample diagrams that do not appear in light Higgs-boson production in the
alignment limit are shown. In the second and third diagram, the bottom quarks are
considered to be massless. For light Higgs-boson production the contribution to the
amplitude originating from these three diagrams is proportional to cos (α− β). This is
the reason why they vanish in the alignment limit.

the NLO corrections in terms of the K-factor

|ANLO,EW

H |2 = |A(1)
H + A

(2)
H |2

= |A(1)
H |2 + 2Re

(
A

(1)
H A

(2)∗
H

)
+O

((
GFM

2
W

)2) ≡ |A(1)
H |2KNLO

EW , (25)

using the one-loop A
(1)
H and two-loop A

(2)
H contributions to the amplitude with the nor-

malization defined in Eq. (20).
If the coefficient c2HDM

Hl
or c2HDM

Hh
of Eq. (23) becomes very small, the one-loop amplitude

A
(1)
H is very small too, and the two-loop amplitude A

(2)
H becomes the true leading order

result. As discussed in the context of Higgs-boson production and decay with a fourth
fermion generation [11], neglecting the term |A(2)

H |2 is no longer justified in this case, and
we define a new K-factor

|ANLO,EW

H |2 = |A(1)
H + A

(2)
H |2 = |A(1)

H |2 + 2Re
(
A

(1)
H A

(2)∗
H

)
+ |A(2)

H |2 ≡ |A
(1)
H |2K

NLO

EW . (26)

Whenever K
NLO

EW differs significantly from KNLO
EW , K

NLO

EW will be used in Section 5.

4.1 Analytical and numerical tests

We have performed several analytical as well as numerical tests to validate the new com-
ponents of QGS, which are the 2HDM Feynman rules, automatic generation of Feynman
diagrams and the appearances of new rank 2 and 3 integrals.

The ultraviolet (UV) structure of the new integrals as well as the consistency of the
2HDM Feynman rules has been tested by extracting all UV poles in dimensional regular-
ization, as explained in Ref. [16], and verifying their cancellation analytically.

Furthermore, the cancellation of collinear singularities can also be used to validate
the implementation of the Feynman rules and the calculation of the new integral struc-
tures. Collinear singularities arise in some diagrams, if the external gluons couple to light
fermions, but they have to cancel when summing up the contributions from all diagrams.
These singularities have been regularized by fictitious small fermion masses and become
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Figure 3: Collinear structures that do not appear in the alignment limit are shown.
Massless particles are marked as wavy or dotted lines, while solid lines denote massive
particles.

manifest in terms of linear and quadratic logarithms. The two-loop electroweak ampli-
tude is subdivided into the contribution that comes from the first and second generation of
fermions and the contribution that originates from the third generation. The cancellation
of the collinear divergent logarithms, which arise from the first and second generation of
fermions, has been verified analytically. For the third generation of fermions, two new
collinear structures, originating from the second and third diagram in Fig. 2, are pre-
sented in Fig. 3. Their analytic cancellation requires new integration-by-parts identities
and a more complicated partial-fraction decomposition due to new denominators. All
quadratically collinear divergent logarithms can then be cancelled analytically. The lin-
early collinear divergent logarithms have been treated in a numerical approach. Here, the
logarithm is extracted analytically, but its coefficient is evaluated numerically. We have
verified that the sum of all these coefficients cancels numerically.

Another way to verify our implementation of the 2HDM is to test the behaviour of
the NLO electroweak corrections in different limits. In the decoupling limit introduced in
the end of Section 2, all new Higgs-boson masses are much larger than the electroweak
scale, such that the new particles decouple from the SM. Therefore, the NLO corrections
in the 2HDM should approach those of the SM. Fig. 4 shows a decoupling scenario for
g + g → Hl. The 2HDM parameters have been chosen as

MHh
= MHa = MHc = Msb = M∗, cαβ = 0, tβ = 2, (27)

where all masses are set equal to the scale of new physics M∗, because perturbativity
requires the mass splitting to be smaller than v2/M∗ [20]. At M∗ = 2400 GeV, the elec-
troweak corrections in the 2HDM have almost approached those of the SM. In addition,
we observe that the scale dependence of the MS-renormalized corrections shrinks, c.f. Ap-
pendix A for the analytic formula. The proc2 renormalization has not been taken into
account: since the LO of its defining process Hh → ZZ vanishes in the alignment limit,
it cannot be expected to show proper decoupling behaviour.

Furthermore, several one-loop processes and all finite NLO counterterms have been
cross-checked against the implementation in RECOLA2 [13] to verify the implementation
of the Feynman rules and the generation of one-loop diagrams.
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Figure 4: Decoupling scenario for the process g + g → Hl as defined in Eqs. (27).

5 Results and discussion

In this section, we present the numerical results of phenomenologically interesting sce-
narios for light and heavy Higgs-boson production in gluon fusion for the CP-conserving
2HDM. First, we consider the benchmark points (BP) in Tabs. 1 and 2 in different renor-
malization schemes. The BPs a-1 and b-1 are taken from Ref. [37] and they correspond
to best-fit constraints on the triple Higgs couplings from the Higgs signal strengths. All
other BPs are from the LHC Higgs cross section working group report [8] and are sample
points of phenomenologically interesting allowed scenarios compatible with the 2HDM
type II. Then, in order to analyze the influence of the mass splitting on the perturbative
behaviour of the Higgs boson production processes, we move to a benchmark scenario
where we keep all new Higgs boson masses fixed at 700 GeV except for the heavy Higgs
boson mass which is varied between 600 GeV and 800 GeV. This scenario agrees with
current experimental and theoretical exclusion limits [5, 38, 39].

BP
MHh

GeV

MHa

GeV

MHc

GeV

m12

GeV
tβ

Msb

GeV

|λmax
i |
4π

|c2HDM
Hh

|2

21A 200.0 500.0 200.0 135.0 1.5 198.7 0.28 0.44
21B 200.0 500.0 500.0 135.0 1.5 198.7 0.57 0.44
21C 400.0 225.0 225.0 0.0 1.5 0.0 0.49 0.44
21D 400.0 100.0 400.0 0.0 1.5 0.0 0.49 0.44
3A1 180.0 420.0 420.0 70.7 3.0 129.1 0.42 0.11

Table 1: 2HDM benchmark points (BP) in the alignment limit, i.e. cαβ = 0, taken from
Ref. [8]. In the alignment limit, |c2HDM

Hl
|2 is always 1.
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BP
MHh

GeV

MHa

GeV

MHc

GeV

m12

GeV
tβ cαβ

Msb

GeV

|λmax
i |
4π

|c2HDM
Hl

|2 |c2HDM
Hh

|2

a-1 700.0 700.0 670.0 424.3 1.5 -0.091 624.5 0.16 0.87 0.57
b-1 200.0 383.0 383.0 119.6 2.52 -0.0346 204.2 0.30 0.97 0.19
22A 500.0 500.0 500.0 187.1 7.0 0.28 500.0 0.64 1.00 0.02
3B1 200.0 420.0 420.0 77.8 3.0 0.3 142.0 0.44 1.11 0.0003
3B2 200.0 420.0 420.0 77.8 3.0 0.5 142.0 0.46 1.07 0.04
43 263.7 6.3 308.3 52.3 1.9 0.14107 81.5 0.35 1.13 0.14
44 227.1 24.7 226.8 58.4 1.8 0.14107 89.6 0.23 1.14 0.17
45 210.2 63.06 333.5 69.2 2.4 0.71414 116.2 0.31 1.00 0.18

Table 2: 2HDM benchmark points (BP) outside the alignment limit taken from Ref. [37]
(a-1, b-1) and Ref. [8].

For the numerical evaluation we use the following set of SM input parameters [2]:

GF = 1.1663787 · 10−5 GeV−2, MW = 80.385 GeV, ΓW = 2.085 GeV,

MZ = 91.1876 GeV, ΓZ = 2.4952 GeV, Mt = 173.1 GeV, Γt = 1.41 GeV,

Mh ≡ MHl
= 125.09 GeV. (28)

For the renormalization of theW - and Z-boson masses we use the complex mass scheme [40].
In contrast to Ref. [12], where the top-quark mass was renormalized on-shell, here we also
use the complex mass scheme [40] for the top-quark mass.

Benchmark points

According to the analysis of the LHC Higgs cross section working group [8], the BPs in
Tabs. 1 and 2 fulfill constraints like perturbativity and vacuum stability. In Tabs. 1 and
2 we also provide the maximum of the couplings |λmax

i |/(4π) of the Higgs potential of
Eq. (2). Compared to the SM value λSM/(4π) = 0.02, all |λmax

i |/(4π) values are large.
This can potentially lead to large NLO corrections.

Tab. 3 contains the NLO electroweak K-factors for light Higgs-boson production in
gluon fusion in different renormalization schemes in the alignment limit. For this process,

we provide only the factor KNLO
EW , because the difference between KNLO

EW and K
NLO

EW is
tiny – at the per mille level. The OS, p∗ and the two process-dependent renormalization
schemes produce similar results and mostly, the K-factors are comparable in size with the
SM value KSM

EW = 1.051. For the MS-renormalized values, we have chosen µ0 according
to Eq. (13), different from the choice of the renormalization scale in Ref. [12]. The values
for cαβ and tβ of the benchmark points in Tabs. 1 and 2 are defined at the scale µ0. The
uncertainty is obtained as described in Section 3 by taking one half and twice the central
value µ0 and running the parameters cαβ and tβ to the corresponding scales. The results
in the MS scheme are different from the other results and the benchmark points 21A and
21B show a large scale dependence as already analyzed in Ref. [12], where no running of
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BP
σ̂LO

fb
KOS

EW Kp∗

EW Kproc1

EW Kproc2

EW KMS

EW

21A 51.856 1.053 1.063 1.101 1.037 0.994 −0.030+0.342

21B 51.856 1.038 1.048 1.044 1.022 0.930 +0.066
+2.389

21C 51.856 1.043 1.044 1.099 1.055 1.126 −0.001−0.007

21D 51.856 1.029 1.035 1.042 1.029 1.145 −0.012−0.015

3A1 51.856 1.041 1.040 1.045 1.041 1.118 −0.042−0.010

Table 3: The NLO electroweak K-factors for the process g+g → Hl for the 2HDM bench-
mark points (BP) in the alignment limit are shown. They are defined in Tab. 1. The
renormalization scale has been set to µ0 as defined in Eq. (13) for the MS scheme. The
lower (upper) value of the MS result corresponds to the change when taking µ0/2 (2µ0)
as renormalization scale.

the parameters was considered yet. The running results in an enhanced scale dependence
for these two benchmark points.

For the remaining benchmark points with cαβ 6= 0, the K-factors of the electroweak
corrections to the process g + g → Hl are shown likewise in Tab. 4. Again, the K-factors
of the OS, p∗ and the two process-dependent renormalization schemes are close to the SM,
while the MS scheme leads to different results. Nevertheless, the electroweak corrections
are always moderate in size, i.e. they are mostly below 5% compared to the LO production
cross section.

BP
σ̂LO

fb
KOS

EW Kp∗

EW Kproc1

EW Kproc2

EW KMS

EW

a-1 45.352 1.043 1.047 1.048 1.057 0.962 +0.042
+2.634

b-1 50.381 1.048 1.045 1.054 1.040 0.995 +0.002
+0.175

22A 51.856 1.017 1.018 1.015 1.017 1.006 −0.871–
3B1 57.601 1.039 1.038 1.039 1.032 1.072 −0.152+0.079

3B2 55.302 1.037 1.036 1.035 1.034 0.917 −0.054+0.120

43 58.733 1.042 1.043 1.038 1.036 1.126 −0.022+0.030

44 59.189 1.043 1.044 1.038 1.034 1.103 +0.002
+0.002

45 51.603 1.037 1.036 1.026 1.070 1.045 +0.111
−0.075

Table 4: The NLO electroweak K-factors for the process g+g → Hl for the 2HDM bench-
mark points (BP) that are not in the alignment limit are presented. They are defined in
Tab. 2. The renormalization scale has been set to µ0 as defined in Eq. (13) for the MS
scheme. The lower (upper) value of the MS result corresponds to the change when taking
µ0/2 (2µ0) as renormalization scale. The lower MS uncertainty for BP 22A is not shown,
since the RGEs (14) do not allow for a stable solution, see also Fig. 9 of Appendix B.
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BP
σ̂LO

fb
K

OS

EW K
p∗

EW K
proc1

EW K
proc2

EW K
MS

EW

21A 25.737
0.486 0.492 0.426 0.533 0.655 +0.197

−0.451

(0.360) (0.369) (0.276) (0.420) (0.590+0.229
−0.733)

21B 25.737
0.177 0.178 0.166 0.183 0.257 −0.033−0.060

(-0.765) (-0.756) (-0.823) (-0.773) (−0.387−0.181−1.336)

21C 69.019
0.958 0.950 0.822 0.904 0.822 +0.176

−0.088

(0.939) (0.931) (0.780) (0.879) (0.793+0.181
−0.097)

21D 69.019
0.854 0.840 0.803 0.848 0.693 +0.244

−0.095

(0.845) (0.831) (0.788) (0.816) (0.662+0.269
−0.117)

3A1 6.205
0.581 0.580 0.486 0.550 0.336 +0.667

−0.100

(0.305) (0.303) (0.210) (0.245) (−0.150−0.223−0.121)

Table 5: The NLO electroweak K-factors for the process g+g → Hh for the 2HDM bench-
mark points (BP) in the alignment limit are shown. They are defined in Tab. 1. Both

K
NLO

EW (first value) and KNLO
EW (in parentheses) are shown. The renormalization scale has

been set to µ0 as defined in Eq. (13) for the MS scheme. The lower (upper) value of the
MS result corresponds to the change when taking µ0/2 (2µ0) as renormalization scale.

We now turn to heavy, neutral Higgs-boson production g + g → Hh. There are two
aspects that we have to consider when looking at this process. On the one hand, the LO
production cross sections in Tabs. 5 and 6 depend on the heavy Higgs-boson mass as well
as on the coefficient |c2HDM

Hh
|2. On the other hand, the coefficients |c2HDM

Hh
|2 can be close

to zero. This is different from the light Higgs-boson production case, where for all BPs
the same light Higgs-boson mass enters, and where the coefficients |c2HDM

Hl
|2, as given in

Tab. 2, are always close to 1 or even equal to 1, as it is the case in the alignment limit.
For these reasons, the LO cross sections of the heavy Higgs-boson production can be very
small and in particular comparable in size to the NLO contribution. Then, further terms
of the perturbative expansion of the cross section are required

|ANNLO,EW

Hh
|2 = |A(1)

Hh
+ A

(2)
Hh

+ A
(3)
Hh
|2

= |A(1)
Hh
|2 + A

(1)
Hh
A

(2)∗
Hh

+ A
(1)∗
Hh

A
(2)
Hh

+ |A(2)
Hh
|2

+ A
(1)
Hh
A

(3)∗
Hh

+ A
(1)∗
Hh

A
(3)
Hh

+O
(
(GFM

2
W )3

)
,

(29)

where A
(3)
Hh

is the three-loop amplitude. In Eq. (29), |A(1)
Hh
|2 is the LO cross section up to a

global factor. Likewise, A
(1)
Hh
A

(2)∗
Hh

+A
(1)∗
Hh

A
(2)
Hh

corresponds to the NLO contribution, while

|A(2)
Hh
|2 and A

(1)
Hh
A

(3)∗
Hh

+ A
(1)∗
Hh

A
(3)
Hh

enter at NNLO. If |A(1)
Hh
|2 is very small, |A(2)

Hh
|2 can be

of the same size as the NLO contribution, while A
(1)
Hh
A

(3)∗
Hh

+A
(1)∗
Hh

A
(3)
Hh

can be expected to

be small again. Therefore, |A(2)
Hh
|2 should not be neglected. Furthermore, the imaginary
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BP
σ̂LO

fb
K

OS

EW K
p∗

EW K
proc1

EW K
proc2

EW K
MS

EW

a-1 45.488
1.145 1.161 1.121 1.084 1.401 +0.253

−1.385
(1.031) (1.048) (1.011) (0.997) (1.270+0.200

−2.114)

b-1 10.767
0.696 0.693 0.628 0.701 0.981 +0.154

−0.574
(0.569) (0.566) (0.499) (0.572) (0.898+0.140

−0.713)

22A 2.866
7.504 7.456 7.517 6.989 4.030 +0.758

–
(2.798) (2.773) (2.812) (2.738) (−0.273+3.301

– )

3B1 0.019
27.00 27.09 326.3 37.35 286.5 −284.9−285.5

(-2.714) (-2.821) (-24.62) (-2.739) (−33.26+34.70
+30.66)

3B2 2.586
1.019 1.031 1.005 1.042 7.491 −6.210+23.13

(0.933) (0.945) (0.828) (0.850) (4.443−3.181+5.347)

43 9.828
0.945 0.941 0.979 1.151 0.580 +0.531

−0.171
(0.887) (0.883) (0.910) (0.925) (0.450+0.574

−0.237)

44 10.271
1.028 1.024 1.067 1.216 0.807 +0.322

−0.190
(0.977) (0.973) (1.006) (1.032) (0.740+0.326

−0.224)

45 10.552
0.794 0.799 0.844 0.749 1.096 −0.402+1.155

(0.782) (0.788) (0.838) (0.591) (1.094−0.429+0.905)

Table 6: The NLO electroweak K-factors for the process g+g → Hh for the 2HDM bench-
mark points (BP) that are not in the alignment limit are shown. They are defined in
Tab. 2. The renormalization scale has been set to µ0 as defined in Eq. (13) for the MS

scheme. Both K
NLO

EW (first value) and KNLO
EW (in parentheses) are shown. The lower (upper)

value of the MS result corresponds to the change when taking µ0/2 (2µ0) as renormaliza-
tion scale. The lower MS uncertainty for BP 22A is not shown, since the RGEs (14) do
not allow for a stable solution, see also Fig. 9 of Appendix B.

part of the LO amplitude can be similar in magnitude or even larger than the real part
when the heavy Higgs-boson mass becomes larger than twice the top-quark mass. This
can lead to cancellations between real and imaginary contributions in the NLO term.

In both cases, there can be a considerable difference between KNLO
EW and K

NLO

EW as

defined in Eqs. (25) and (26). Since K
NLO

EW contains the additional contribution, it seems
to be more appropriate to quantify the electroweak corrections to heavy Higgs-boson
production. In order to point out BPs where this difference occurs, the KNLO

EW are shown
in parentheses in Tabs. 5 and 6 even though they can take an unphysical, negative value
for some benchmark points, e.g. for 21B and 3B1.

Different from the sister process g + g → Hl, many K-factors in Tabs. 5 and 6 are far
from one. This is at least partly due to the different LO couplings between the t−Hl− t
and t − Hh − t interactions. While the |c2HDM

Hl
|2 in Tabs. 1 and 2 are generally one or

close to one, the |c2HDM
Hh

|2 are at most 0.57. In addition, the decoupling of the new Higgs
sector from the SM can play a role for BP a-1 and 22A. While decoupling imposes the
restriction that SM processes may not receive large corrections from the new sector, this
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is not the case for non-SM processes like heavy Higgs-boson production.
In the following, we have a closer look at the benchmark points 21B, 22A and 3B1,

which have large electroweak NLO corrections and a large difference between K
NLO

EW and
KNLO

EW for heavy Higgs-boson production. Benchmark point 21B does not only show very

large corrections of more than -80%, but also the difference between K
NLO

EW and KNLO
EW is of

the same order of magnitude. Hence, |A(1)
Hh
| and |A(2)

Hh
| must be similar in size, which may

partially be due to the large value of |λmax
i |/(4π) = 0.57. The same is true for benchmark

point 22A. It has a large value of |λmax
i |/(4π) = 0.64, and in addition, its LO cross section

is quite small, such that the two-loop diagrams yield the true LO contribution. In order
to verify whether the NNLO contribution is small in these scenarios, would, however,
require the calculation of the three-loop contributions, which is not within reach in the
near future.

The benchmark point 3B1 has an even smaller LO cross section due to the almost
vanishing coefficient |c2HDM

Hh
|2 = 0.0003. Therefore, the extremely large K-factor of more

than 27 can be understood, since the true LO contribution is given by the two-loop
diagrams. However, since the coefficients in front of the counterterms of the mixing angles
are large for this BP and the small LO does not factorize, we observe large differences
between the results in different renormalization schemes. This leads to a large dependence
on the choice of the renormalization scheme, and thus to large theoretical uncertainties
on the production cross section. In particular, this shows that a small coupling of the
heavy Higgs boson to top quarks does not automatically lead to a small cross section
when higher order contributions are considered.

Finally, there are benchmark points that have moderate NLO corrections on the one

hand, but a relatively large difference between K
NLO

EW and KNLO
EW on the other hand. We

have investigated this difference further and found that it is caused by cancellations be-
tween the real and imaginary contributions in the term A

(1)
Hh
A

(2)∗
Hh

+ A
(1)∗
Hh

A
(2)
Hh

. Especially
benchmark point a-1 exhibits this feature, but it can also be observed in BP 3B2 and 44.

As a measure of the scale dependence in the MS scheme, we can look at the size of
the coefficients of the scale-dependent logarithms in the percentage correction presented
in Tabs. 7 and 8 of Appendix A. In general, they can become very small or even vanish
for certain choices of the parameters. In particular, in the alignment limit with Msb = 0,
the scale dependent logarithmic term for g + g → Hl can be obtained from Eq. (32) of
Appendix A and becomes very simple

δNLO,µ−dep.
EW,Msb=0 =

3GF

√
2M2

Hl

8π2t2β(M2
Hh
−M2

Hl
)

ln

(
µ2

M2
Hl

)[
(1− t2β)M2

Hh
+ 2m2

t

]
, (30)

which even vanishes for the special case M2
Hh

= 2m2
t/(t

2
β − 1). This scenario is almost

realized for BP 21C and 21D, and hence, these benchmark points exhibit only a small scale
dependence in Tab. 3.

In addition, we observe that the MS corrections for light Higgs-boson production are
usually moderate, while for heavy Higgs-boson production, this scheme often leads to
K-factors far from one in addition to a very strong scale dependence. This can, again,

19



partly be traced back to small LO couplings between the heavy Higgs boson and the top
quarks.

Benchmark scenarios at M∗ = 700 GeV

Next, we consider light and heavy Higgs-boson production in two benchmark scenarios at
a moderately heavy mass scale M∗

MHa = MHc = Msb = M∗ = 700 GeV, tβ = 2, MHh
= 600 . . . 800 GeV. (31)

The first scenario uses the alignment limit and the second scenario sets cαβ = 0.03. As we
see in Fig. 5, both scenarios fulfill the perturbativity restriction |λi|/(4π) < 1 (i = 1, ..., 5).
In addition, they respect the experimental constraints considered in Refs. [5, 38]. In both
scenarios we vary the heavy, scalar Higgs-boson mass between 600 and 800 GeV. The
size of the couplings λi is more sensitive to these variations compared to variations in the
other Higgs-boson masses MHa , MHc (compare Fig. 5 to Fig. 8 in Appendix B). For that
reason we will present the NLO corrections to Higgs-boson production and also the scale
dependence in the MS renormalization scheme as a function of the heavy Higgs-boson
mass in the following.
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MHh

[GeV]
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|λi|
4π

cαβ = 0.00 : cαβ = 0.03 :

λ1

λ2

λ3

SM

λ1

λ2

λ3

Figure 5: The range of |λi|/(4π) for our benchmark scenarios compared to the SM value
λSM/(4π) = 0.02 (solid, orange line). For the two different values of cαβ the individual
curves for those |λi|/(4π) that are different from zero are also shown (dashed lines). The
explicit formulae for the parameters λi are given in Eqs. (35)-(39) of Appendix B. The
values shown here are for the non-MS schemes and thus no running is taken into account.

Fig. 6 shows the K-factor of the NLO electroweak corrections for the process g+g → Hl

in the 2HDM as a function of the heavy, neutral Higgs-boson mass for the different
renormalization schemes of the mixing angles α and β. We consider the OS, p∗, two
process-dependent and the MS scheme. The grey shaded band shows the region where
at least one of the couplings |λi|/(4π) of Eq. (2) becomes larger than 0.5. The region
of variation of the corresponding |λi|/(4π) values is displayed in Fig. 5. These values
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Figure 6: Percentage correction of the process g + g → Hl in various schemes. The grey
shaded band denotes the region where at least one of the couplings |λi|/(4π) becomes
larger than 0.5 and where one slowly starts to enter in the non-perturbative regime.
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are not valid for the MS scheme, where they adopt different values depending on the
choice of the renormalization scale. As a result of this, the region of perturbativity
generally looks different for the MS renormalized results. In the MS scheme the corrections
are renormalization-scale dependent and we choose the central renormalization scale µ0

according to Eq. (13). In order to estimate the impact of the scale dependence on the
size of the NLO EW corrections, we vary the scale between µ0/2 and 2µ0. A more
detailed analysis is discussed in Appendix C. In the alignment limit presented in the first
plot of Fig. 6, the different renormalization schemes agree quite well for |λi|/(4π) < 0.5.
The curves for MS renormalization (blue) and the renormalization scheme proc1 (purple,
dashed-dotted) show the biggest deviation from the SM, especially when entering the non-
perturbative region. The corrections of the OS, p∗ and proc2 renormalization schemes are
very close to each other for these scenarios, even for large λi. For cαβ = 0.03 presented
in the second plot of Fig. 6, the behaviour of the OS, p∗, proc1 and proc2 scheme is very
similar to the case of the alignment limit (upper plot), while the MS results show a much
larger scale variation.

Fig. 7 shows the K-factor of the NLO electroweak corrections in different renormaliza-
tion schemes for the process g+ g → Hh in the 2HDM as a function of the heavy, neutral
Higgs-boson mass for the same scenarios as in Fig. 6. Again, as for the benchmark points,

we use K
NLO

EW as the K-factor for heavy Higgs-boson production. First of all, we can
expect the NLO corrections for heavy Higgs-boson production to be larger: The LO con-
tribution is suppressed since for tβ = 2 and close to the alignment limit, the coefficient
c2HDM
Hh

≈ −0.5 is considerably smaller than c2HDM
Hl

≈ 1. In addition, the LO depends on
the heavy Higgs-boson mass MHh

, which is not fixed in the scenario under consideration.
In general, we can see that for |λmax

i |/(4π) < 0.5, the K-factors do no longer lie roughly
between 0.99 and 1.12 as for light Higgs-boson production, but now we observe a larger
range of K-factors between 0.4 and values larger than 1.8. Just as for light Higgs-boson
production, the proc1 scheme differs considerably from the other renormalization schemes
for large MHh

. The behaviour of the results for the MS renormalization seems to be more
similar to the other schemes when compared with the light Higgs-boson production, even
though there are sizable numerical differences in some regions. However, this scheme
strongly depends on the definition of the running procedure requiring a more detailed
analysis, which is performed in Appendix C.

As expected, due to cancellations among the finite counterterms, the OS and p∗ scheme
lead to small perturbative corrections. The differences between these two schemes may
be too small to give an estimate of missing higher-order uncertainties. As long as MHh

does not become too large the two process-dependent schemes also perform very well for
the analyzed scenarios, both for light as well as for heavy Higgs-boson production.
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Figure 7: Percentage correction of the process g + g → Hh in various schemes. The grey
shaded band denotes the region where at least one of the couplings |λi|/(4π) becomes
larger than 0.5 and where one slowly starts to enter in the non-perturbative regime.
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6 Summary and conclusion

We have computed the two-loop electroweak corrections to the production of a light and
a heavy neutral, scalar Higgs boson through gluon fusion in the 2HDM. We have renor-
malized the new Higgs-boson masses in the on-shell scheme and provide the electroweak
percentage correction in different renormalization schemes for the mixing angles α and β
for these two processes. In particular, for the mixing angles we have employed the on-shell,
p∗, MS and two process dependent schemes. We can determine the next-to-leading order,
electroweak percentage correction for essentially any scenario of the new mass parameters
and the mixing angles of the CP-conserving 2HDM. In particular, we have computed the
two-loop electroweak corrections for benchmark points collected by the LHC Higgs cross
section working group as well as for individual other example scenarios. For Higgs-boson
production through gluon fusion, the on-shell scheme performs well for all chosen sce-
narios. The MS scheme can suffer from a large scale dependence and can in general not
provide reliable predictions for all scenarios. For the production of the light Higgs-boson,
the electroweak corrections are always moderate in size, i.e. they are mostly around 5%
compared to the LO production cross section for the chosen benchmark points, while for
the production of a heavy Higgs-boson, the electroweak corrections strongly vary depend-
ing on the details of the selected scenario. We have solved new technical challenges, which
was required to accomplish this calculation. Our results are also directly applicable to
determine the electroweak percentage corrections for the partial decay widths of the light
and heavy neutral, scalar Higgs-boson decay into two gluons within the 2HDM.
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A Scale dependence of the percentage correction in

the MS scheme without running of cαβ and tβ

The NLO EW percentage corrections δNLO
EW to the LO partonic cross section are defined

through σ̂NLO = σ̂LO(1 + δNLO
EW ). The scale dependence of the percentage correction in the

MS scheme for the process g + g → Hl in the alignment limit (cαβ = 0) has already been
presented in Ref. [13]. It reads

δNLO,µ−dep.
EW =

GF

√
2

8π2t2βM
2
Hh

(M2
Hh
−M2

Hl
)

ln

(
µ2

M2
Hl

)
×

{
(1− t2β)(M2

Hh
−M2

sb)
[
3M2

Hh
M2

Hl
+M2

sb(M2
Ha

+ 2M2
Hc
− 3M2

Hh
)
]

+ 6m2
t (M

2
Hh
M2

Hl
− 4M2

sbm
2
t )

}
. (32)

The corresponding scale dependence for the process g + g → Hh in the alignment limit
(cαβ = 0) is given by

δNLO,µ−dep.
EW =

GF

√
2

16π2t2βM
2
Hh

(M2
Hh
−M2

Hl
)

ln

(
µ2

M2
Hl

)
×

{
(1− t2β)(M2

sb −M2
Hh

)

[
(M2

Ha
+ 2M2

Hc
)
[
(1 + t2β)(M2

Hh
−M2

Hl
) + 2t2βM

2
sb

]
+3M2

Hh

[
M2

Hh
−M2

Hl
+ t2β(M2

Hh
+M2

Hl
− 2M2

sb)
]]

− 6m2
tM

2
Hh

[
M2

Hh
−M2

Hl
+ t2β(M2

Hh
+M2

Hl
)

]
+24m4

t

[
(1 + t2β)(M2

Hh
−M2

Hl
) + 2t2βM

2
sb

]}
. (33)

The scale dependence of the process g+g → Hh in the anti-alignment limit (sαβ = 0) can
be obtained from Eq. (32) by interchanging the light and heavy Higgs-boson masses, i.e.
MHl

↔ MHh
. Likewise one can obtain the scale dependence of the process g + g → Hl

in the anti-alignment limit (sαβ = 0) from Eq. (33) by again interchanging the light and
heavy Higgs-boson masses. The limit of two equal neutral, scalar Higgs-boson masses,
MHh

≡ MHl
, does not exist in all the above cases due to the denominator structure of

Eqs. (32) and (33).
In order to study and judge the magnitude of the scale dependence, we compare the

size of the coefficient of the scale dependent logarithm, which we define by

δNLO,µ−dep.
EW (x) = d(x) ln

(
µ2

M2
Hl

)
, with x = g + g → Hl or x = g + g → Hh. (34)
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BP 21A 21B 21C 21D 3A1
d(g + g → Hl) -0.071 -0.072 -0.004 -0.004 -0.058
d(g + g → Hh) 0.215 0.218 0.122 0.155 0.864

Table 7: The coefficient in front of the scale dependent logarithm of the percentage
correction is shown for the benchmark points that are in the alignment limit (cαβ = 0).

BP a-1 b-1 22A 3B1 3B2 43 44 45

d(g + g → Hl) -0.183 -0.045 4 · 10−5 -0.029 0.003 -0.015 0.003 0.072
d(g + g → Hh) 0.562 0.283 -5.672 15.917 -1.507 0.353 0.201 -0.331

Table 8: The coefficient in front of the scale dependent logarithm of the percentage
correction is shown for the benchmark points that are not in the alignment limit (cαβ 6= 0).

In particular for the BPs in the alignment limit, the coefficient can easily be obtained by
Eqs. (32) and (33). The explicit values of the coefficients are shown in Tabs. 7 and 8.

The size of the coefficients reflects directly the magnitude of the scale dependence in
the MS scheme without taking into account the running of the mixing angles cαβ and tβ.
Coefficients whose absolute value is larger than one, like for example for the BPs 22A, 3B1

and 3B2 for the process g + g → Hh, exhibit a large scale dependence and give rise to
large corrections. Small coefficients, like for example for the BPs 21C , 21D, 22A and 3B2

for the process g + g → Hl, exhibit a very small scale dependence.

B Behaviour of the coupling constants λi

The parameters λi (i = 1, ..., 5) of the Higgs potential in Eq. (2) depend on trigonometric
functions of the mixing angles, i.e. tβ and cαβ as well as on the masses of the Higgs-bosons
and the soft-breaking scale. The individual parameters read

λ1 =
g2

4M2
W

[
(cαβ − sαβtβ)2M2

Hh
+ (sαβ + cαβtβ)2M2

Hl
− t2βM2

sb

]
, (35)

λ2 =
g2

4M2
W t

2
β

[
(sαβ + cαβtβ)2M2

Hh
+ (cαβ − sαβtβ)2M2

Hl
−M2

sb

]
, (36)

λ3 =
g2

4M2
W tβ

[
(sαβ + cαβtβ)(cαβ − sαβtβ)(M2

Hh
−M2

Hl
) + tβ(2M2

Hc
−M2

sb)
]
, (37)

λ4 =
g2

4M2
W

[
M2

sb − 2M2
Hc

+M2
Ha

]
, (38)

λ5 =
g2

4M2
W

[
M2

sb −M2
Ha

]
, (39)

with the coupling g and the W -boson mass MW .
Fig. 8 shows the range of the parameters |λi|/(4π) of the potential for the alternative

scenarios discussed in Section 5, where we have fixed the values of the mixing angles to
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tβ = 2 and cαβ = 0 or cαβ = 0.03. All new heavy mass scales are set to the same value
of 700 GeV, except for one Higgs-boson mass, which is varied between 600 and 800 GeV.
In the two plots of Fig. 8 the parameters |λi|/(4π) are shown as a function of MHa and
MHc , while the plot as a function of MHh

is given in Fig. 5 of Section 5. The size of the
couplings is less sensitive to a variation of MHa and MHc than to a variation of MHh

as
shown in Fig. 5.
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Figure 8: The range between the minimal and maximal value of the modulus of the
parameters λi/(4π) as a function of one of the new Higgs-boson masses is shown. All
other new Higgs-boson mass scales are kept fixed at 700 GeV. The range is also compared
to the SM value λSM/(4π) = 0.02 (solid, orange line). The values shown here are for the
non-MS schemes and thus no running is taken into account.

In Fig. 9 we show a bar chart, where we illustrate the maximal size |λmax
i |/(4π) of the

couplings of the Higgs-boson potential of Eq. (2) for an MS renormalization of the mixing
angles for the BPs of Tabs. 1 and 2. The horizontal, dashed line shows the location of
the value |λmax

i |/(4π) = 0.5. The values |λmax
i |/(4π) are determined with Eqs. (35)-(39)

of Appendix A and are considered to be defined at the scale µd = µ0 of Eq. (13) here.
The green central bars of |λmax

i |/(4π) coincide with the values given in Tabs. 1 and 2. In
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Figure 9: The running of the largest coupling constants |λmax
i |/(4π) is shown for all

benchmark points of Section 5. For the benchmark point 22A the bar for µ = µ0/2 is not
given, since the RGEs (14) do not allow for a stable solution.

the MS scheme these central values are then run with the help of the RGEs (14) to the
scale µ0/2 and 2µ0, and they are used to obtain the red and yellow bar, respectively.

C MS results in the M∗ benchmark scenarios

In this appendix we give the results in the MS renormalization scheme of the mixing
angles α and β, for the K-factors of the benchmark scenarios at M∗ = 700 GeV described
in Section 5. The mass parameters read

MHa = MHc = Msb = M∗ = 700 GeV, MHh
= 600, . . . , 800 GeV,

and the mixing angles are

tβ = 2, cαβ = 0 or cαβ = 0.03, (40)

see also Eq. (31). In particular in Figs. 10 and 11 we compare the scale dependence of
the EW corrections in three cases:

• The dependence on the renormalization scale µ enters just in the loop corrections.
The running of the mixing angles α and β is not taken into account (red bands).

• The dependence on the renormalization scale µ enters in the loop corrections as well
as in the running of the mixing angles α and β, see Eq. (14); the default scale is
µd = µ0, where the soft-breaking scale takes the value Msb = 700 GeV, and where
the mixing angles tβ and cαβ take the benchmark values tβ = 2, and cαβ = 0 or
cαβ = 0.03 (blue bands).
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Figure 10: The K-factors of the process g + g → Hl in various MS schemes are compared
to the on-shell scheme and to the SM result. Solid lines are for µ = µ0, while dotted
and dash-dotted lines refer to µ = µ0/2 and µ = 2µ0, respectively. The grey shaded
band denotes the region where at least one of the couplings |λi|/(4π) (i = 1, ...5) of the
potential in Eq. (2) becomes larger than 0.5 for at least one of the scales µ considered.
The curve with µ = µ0 for the case of the MS scheme without running coincides with
the µ = µ0 curve for the MS scheme with running, where the parameters are defined at
µd = µ0, since in both cases the parameters have been defined at µ0.

29



• The dependence on the renormalization scale µ enters in the loop corrections as
well as in the running of the mixing angles α and β, see Eq. (14); the default scale
µd at which the soft-breaking scale takes the value Msb = 700 GeV and at which
the mixing angles tβ and cαβ take the benchmark values tβ = 2 and cαβ = 0 or
cαβ = 0.03 is µd = vev (yellow bands).

The bands in Figs. 10 and 11 are generated by considering the region of the parametric
space between the three curves corresponding to the values µ0, µ0/2 and 2µ0 for the
renormalization scale, where µ0 is the typical scale of the processes under consideration
as calculated in Eq. (13). The curve of the on-shell renormalization scheme (dashed,
black curve) is shown as a reference curve for the scale-independent schemes. For an MS
renormalization of the mixing angles, the couplings λi of Eq. (2) are scale dependent.
The grey shaded band below each figure shows the region where at least one of the MS
couplings |λi|/(4π) of Eq. (2) for at least one of the values of µ becomes larger than 0.5 in
the considered renormalization scenarios. Due to the scale dependence, the grey shaded
band for an MS renormalization is in general different from the case of considering a
scale-independent scheme for the mixing angles, as shown in Figs. 6 and 7. Therefore,
the regions where one enters in the non-perturbative regime can also be different.

The K-factor for the process g + g → Hl is shown in Fig. 10 for cαβ = 0 (upper plot)
and cαβ = 0.03 (lower plot). In the alignment limit, cαβ = 0, the corrections do not differ
much from the SM in all considered MS schemes when the couplings |λi|/(4π) remain
below 0.5 (white region); they are just slightly smaller (1.03 < KNLO

EW < 1.055). The
situation changes drastically in the non-perturbative grey region, where scale variation
becomes large and seems to reveal a certain correlation between perturbativity and scale
dependence for this process in the alignment limit. This correlation, however, can be a
peculiar property of the chosen scenarios: from Eq. (32) we see that in the case of a heavy
new scalar sector, the largest contribution to the scale dependence in the MS scheme
comes from the term proportional to (M2

Hh
−M2

sb) when the running of the mixing angles
α and β as well as of the soft-breaking scale Msb is not taken into account; the couplings λi
of Eqs. (35)-(39) on the contrary, show a more complicated dependence on the masses of
the neutral sector. In the case of exactly equal heavy masses in the alignment limit, they
receive the largest contribution from the (M2

Hh
−M2

sb) difference in λ1. Moving slightly
away from the alignment scenario (lower plot with cαβ = 0.03), we notice a larger difference
from the SM value and a wider scale dependence, even in the white (perturbative) region.
In particular, for MHh

above 700 GeV, even remaining in a region where all |λi|/(4π)
are below 0.5, the MS bands become quickly wider. Due to this behaviour, MS scale
dependence can not serve as a good estimator of the theoretical uncertainty in the light,
neutral Higgs-boson production away from the alignment limit.

In Fig. 11, we compare the different MS schemes for the production of a heavy, neutral
Higgs-boson in the alignment limit (upper plot) and slightly away from it (lower plot). In
this case we do not have a comparison with the SM and we base our considerations on a
comparison with the curve of the on-shell renormalization scheme. Restricting the analysis
of the case cαβ = 0 to the white (perturbative) region we notice a strong dependence on
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Figure 11: The K-factors of the process g+ g → Hh in various MS schemes are compared
to the on-shell scheme. Solid lines are for µ = µ0, while dotted and dash-dotted lines refer
to µ = µ0/2 and µ = 2µ0, respectively. The grey shaded band denotes the region where at
least one of the couplings |λi|/(4π) (i = 1, ...5) of the potential in Eq. (2) becomes larger
than 0.5 for at least one of the scales µ considered. The curve with µ = µ0 for the case of
the MS scheme without running coincides with the µ = µ0 curve for the MS scheme with
running, where the parameters are defined at µd = µ0, since in both cases the parameters
have been defined at µ0.
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MHh
for all results. In addition they change a lot for the various MS schemes and for

different values of the scale µ. The situation is similar but less dramatic for cαβ =
0.03. Owing to these large differences the MS scheme can not reliably predict the NLO
contributions to heavy, neutral Higgs-boson production.
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