65 research outputs found

    Differences in the transcriptome signatures of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of two genetically very similar cell lines (A and B) derived from the laboratory isolate <it>Entamoeba histolytica </it>HM-1:IMSS, which differ in their virulence properties, provides a powerful tool for identifying pathogenicity factors of the causative agent of human amoebiasis. Cell line A is incapable inducing liver abscesses in gerbils, whereas interaction with cell line B leads to considerable abscess formation. Phenotypic characterization of both cell lines revealed that trophozoites from the pathogenic cell line B have a larger cell size, an increased growth rate <it>in vitro</it>, an increased cysteine peptidase activity and higher resistance to nitric oxide stress. To find proteins that may serve as virulence factors, the proteomes of both cell lines were previously studied, resulting in the identification of a limited number of differentially synthesized proteins. This study aims to identify additional genes, serving as virulence factors, or virulence markers.</p> <p>Results</p> <p>To obtain a comprehensive picture of the differences between the cell lines, we compared their transcriptomes using an oligonucleotide-based microarray and confirmed findings with quantitative real-time PCR. Out of 6242 genes represented on the array, 87 are differentially transcribed (≄two-fold) in the two cell lines. Approximately 50% code for hypothetical proteins. Interestingly, only 19 genes show a five-fold or higher differential expression. These include three <it>rab7 GTPases</it>, which were found with a higher abundance in the non-pathogenic cell line A. The <it>aig1-like GTPases</it>are of special interest because the majority of them show higher levels of transcription in the pathogenic cell line B. Only two molecules were found to be differentially expressed between the two cell lines in both this study and our previous proteomic approach.</p> <p>Conclusions</p> <p>In this study we have identified a defined set of genes that are differentially transcribed between the non-pathogenic cell line A and the pathogenic cell line B of <it>E. histolytica</it>. The identification of transcription profiles unique for amoebic cell lines with pathogenic phenotypes may help to elucidate the transcriptional framework of <it>E. histolytica </it>pathogenicity and serve as a basis for identifying transcriptional markers and virulence factors.</p

    Senate Executive Committee Minutes January 25, 2011

    Full text link
    Minutes for the meeting of the Senate Executive Committee on January 25, 2011

    Planets Around Low-Mass Stars (PALMS). V. Age-Dating Low-Mass Companions to Members and Interlopers of Young Moving Groups

    Get PDF
    Copyright © 2015. The American Astronomical Society. All rights reserved.We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7-M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8-120 Myr) in the literature. The inferred masses of the companions (~10-100 Mjup) are highly sensitive to the ages of the primary stars so we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. 2MASS J02155892-0929121 C is a new M7 substellar companion (40-60 Mjup) with clear spectroscopic signs of low gravity and hence youth. The primary, possibly a member of the ~40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (1 Gyr) tidally-locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the dustiest-known member of the Pleiades.NASANSFMt. Cuba Astronomical FoundationSamuel OschinAlfred P. Sloan Foundatio

    The Science Case for Multi-Object Spectroscopy on the European ELT

    Get PDF
    This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest 'first-light' structures in the partially-reionised Universe. The material presented here results from thorough discussions within the community over the past four years, building on the past competitive studies to agree a common strategy toward realising a MOS capability on the E-ELT. The cases have been distilled to a set of common requirements which will be used to define the MOSAIC instrument, entailing two observational modes ('high multiplex' and 'high definition'). When combined with the unprecedented sensitivity of the E-ELT, MOSAIC will be the world's leading MOS facility. In analysing the requirements we also identify a high-multiplex MOS for the longer-term plans for the E-ELT, with an even greater multiplex (>1000 targets) to enable studies of large-scale structures in the high-redshift Universe. Following the green light for the construction of the E-ELT the MOS community, structured through the MOSAIC consortium, is eager to realise a MOS on the E-ELT as soon as possible. We argue that several of the most compelling cases for ELT science, in highly competitive areas of modern astronomy, demand such a capability. For example, MOS observations in the early stages of E-ELT operations will be essential for follow-up of sources identified by the James Webb Space Telescope (JWST). In particular, multi-object adaptive optics and accurate sky subtraction with fibres have both recently been demonstrated on sky, making fast-track development of MOSAIC feasible.Comment: Significantly expanded and updated version of previous ELT-MOS White Paper, so there is some textual overlap with arXiv:1303.002

    Comparison of three-view thoracic radiography and computed tomography for detection of pulmonary nodules in dogs with neoplasia

    No full text
    Objective — To compare the detection of pulmonary nodules by use of 3-view thoracic radiography and CT in dogs with confirmed neoplasia. Design — Prospective case series. Animals — 33 dogs of various breeds. Procedures — 3 interpreters independently evaluated 3-view thoracic radiography images. The location and size of pulmonary nodules were recorded. Computed tomographic scans of the thorax were obtained and evaluated by a single interpreter. The location, size, margin, internal architecture, and density of pulmonary nodules were recorded. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for thoracic radiography (with CT as the gold standard). Results — 21 of 33 (64%) dogs had pulmonary nodules or masses detected on CT. Of the dogs that had positive CT findings, 17 of 21 (81 %) had pulmonary nodules or masses detected on radiographs by at least 1 interpreter. Sensitivity of radiography ranged from 71 % to 95%, and specificity ranged from 67% to 92%. Radiography had a positive predictive value of 83% to 94% and a negative predictive value of 65% to 89%. The 4 dogs that were negative for nodules on thoracic radiography but positive on CT were all large-breed to giant-breed dogs with osteosarcoma. Conclusions and Clinical Relevance — CT was more sensitive than radiography for detection of pulmonary nodules. This was particularly evident in large-breed to giant-breed dogs. Thoracic CT is recommended in large-breed to giant-breed dogs with osteosarcoma if the detection of pulmonary nodules will change treatment
    • 

    corecore