6 research outputs found

    Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer

    Get PDF
    BACKGROUND: Drug resistance in breast cancer is a major obstacle to successful chemotherapy. In this study we used cDNA microarray technology to examine gene expression profiles obtained from fine needle aspiration (FNA) of primary breast tumors before and after systemic chemotherapy. Our goal was to determine the feasibility of obtaining representative expression array profiles from limited amounts of tissue and to identify those expression profiles that correlate with treatment response. METHODS: Repeat presurgical FNA samples were taken from six patients who were to undergo primary surgical treatment. Additionally, a group of 10 patients who were to receive neoadjuvant chemotherapy underwent two FNAs before chemotherapy (adriamycin 60 mg/m(2) and cyclophosphamide 600 mg/m(2)) followed by another FNA on day 21 after the first cycle. Total RNA was amplified with T7 Eberwine's procedure and labeled cDNA was hybridized onto a 7600-feature glass cDNA microarray. RESULTS: We identified candidate gene expression profiles that might distinguish tumors with complete response to chemotherapy from tumors that do not respond, and found that the number of genes that change after one cycle of chemotherapy was 10 times greater in the responding group than in the non-responding group. CONCLUSION: This study supports the suitability of FNA-derived cDNA microarray expression profiling of breast cancers as a comprehensive genomic approach for studying the mechanisms of drug resistance. Our findings also demonstrate the potential of monitoring post-chemotherapy changes in expression profiles as a measure of pharmacodynamic effect and suggests that these approaches might yield useful results when validated by larger studies

    Global Array-Based Transcriptomics from Minimal Input RNA Utilising an Optimal RNA Isolation Process Combined with SPIA cDNA Probes

    Get PDF
    Technical advances in the collection of clinical material, such as laser capture microdissection and cell sorting, provide the advantage of yielding more refined and homogenous populations of cells. However, these attractive advantages are counter balanced by the significant difficultly in obtaining adequate nucleic acid yields to allow transcriptomic analyses. Established technologies are available to carry out global transcriptomics using nanograms of input RNA, however, many clinical samples of low cell content would be expected to yield RNA within the picogram range. To fully exploit these clinical samples the challenge of isolating adequate RNA yield directly and generating sufficient microarray probes for global transcriptional profiling from this low level RNA input has been addressed in the current report. We have established an optimised RNA isolation workflow specifically designed to yield maximal RNA from minimal cell numbers. This procedure obtained RNA yield sufficient for carrying out global transcriptional profiling from vascular endothelial cell biopsies, clinical material not previously amenable to global transcriptomic approaches. In addition, by assessing the performance of two linear isothermal probe generation methods at decreasing input levels of good quality RNA we demonstrated robust detection of a class of low abundance transcripts (GPCRs) at input levels within the picogram range, a lower level of RNA input (50 pg) than previously reported for global transcriptional profiling and report the ability to interrogate the transcriptome from only 10 pg of input RNA. By exploiting an optimal RNA isolation workflow specifically for samples of low cell content, and linear isothermal RNA amplification methods for low level RNA input we were able to perform global transcriptomics on valuable and potentially informative clinically derived vascular endothelial biopsies here for the first time. These workflows provide the ability to robustly exploit ever more common clinical samples yielding extremely low cell numbers and RNA yields for global transcriptomics

    Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study

    No full text
    corecore