17 research outputs found

    A Rapid, Reversible, and Tunable Method to Regulate Protein Function in Living Cells Using Synthetic Small Molecules

    Get PDF
    SummaryRapid and reversible methods for perturbing the function of specific proteins are desirable tools for probing complex biological systems. We have developed a general technique to regulate the stability of specific proteins in mammalian cells using cell-permeable, synthetic molecules. We engineered mutants of the human FKBP12 protein that are rapidly and constitutively degraded when expressed in mammalian cells, and this instability is conferred to other proteins fused to these destabilizing domains. Addition of a synthetic ligand that binds to the destabilizing domains shields them from degradation, allowing fused proteins to perform their cellular functions. Genetic fusion of the destabilizing domain to a gene of interest ensures specificity, and the attendant small-molecule control confers speed, reversibility, and dose-dependence to this method. This general strategy for regulating protein stability should enable conditional perturbation of specific proteins with unprecedented control in a variety of experimental settings

    Transcription pausing regulates mouse embryonic stem cell differentiation

    No full text
    The pluripotency of embryonic stem cells (ESCs) relies on appropriate responsiveness to developmental cues. Promoter-proximal pausing of RNA polymerase II (Pol II) has been suggested to play a role in keeping genes poised for future activation. To identify the role of Pol II pausing in regulating ESC pluripotency, we have generated mouse ESCs carrying a mutation in the pause-inducing factor SPT5. Genomic studies reveal genome-wide reduction of paused Pol II caused by mutant SPT5 and further identify a tight correlation between pausing-mediated transcription effect and local chromatin environment. Functionally, this pausing-deficient SPT5 disrupts ESC differentiation upon removal of self-renewal signals. Thus, our study uncovers an important role of Pol II pausing in regulating ESC differentiation and suggests a model that Pol II pausing coordinates with epigenetic modification to influence transcription during mESC differentiation
    corecore