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SUMMARY

Rapid and reversible methods for perturbing the
function of specific proteins are desirable tools
for probing complex biological systems. We
have developed a general technique to regulate
the stability of specific proteins in mammalian
cells using cell-permeable, synthetic molecules.
We engineered mutants of the human FKBP12
protein that are rapidly and constitutively de-
graded when expressed in mammalian cells,
and this instability is conferred to other proteins
fused to these destabilizing domains. Addition
of a synthetic ligand that binds to the destabiliz-
ing domains shields them from degradation,
allowing fused proteins to perform their cellular
functions. Genetic fusion of the destabilizing do-
main to a gene of interest ensures specificity,
and the attendant small-molecule control con-
fers speed, reversibility, and dose-dependence
to this method. This general strategy for regulat-
ing protein stability should enable conditional
perturbation of specific proteins with unprece-
dented control in a variety of experimental
settings.

INTRODUCTION

Techniques that target gene function at the level of DNA

and mRNA are general and powerful strategies for per-

turbing the protein products encoded by specific genes.

The tet/dox and Cre/lox systems have been widely used

to target various genes at the transcriptional level (Ryding

et al., 2001), and RNA interference is rapidly being adop-

ted as a method to achieve posttranscriptional gene si-

lencing (Fire et al., 1998; Medema, 2004). However, exper-

imental approaches to regulate proteins directly are

limited, especially in mammalian cells. In certain cases, in-

hibitors or activators of specific proteins have been found
in nature, and these reagents are often cell-permeable

small molecules. Many of these molecules have found

widespread use as biological probes, often because the

speed, dose-dependence, and reversibility of their activi-

ties provide a useful complement to genetic techniques

(Schreiber, 2003). However, the question of specificity re-

mains of the utmost importance; in many cases, proteo-

mic analysis reveals that a small-molecule regulator of

protein function targets at least one, if not many, off-target

proteins (Davies et al., 2000; Bain et al., 2003; Godl et al.,

2003).

Shokat and coworkers have developed a method by

which a specific kinase can be inhibited using a small-mol-

ecule modulator (Shah et al., 1997; Bishop et al., 1998).

This method involves genetic manipulation of the protein

of interest, typically replacing a large conserved residue

in the active site with a smaller glycine or alanine. Specific-

ity is achieved by chemically modifying a previously

promiscuous inhibitor with a large substituent, which pre-

vents binding to kinases lacking the cavity-forming muta-

tion. This approach has been successful both in cultured

cells and in mice (Bishop et al., 2000; Wang et al., 2003,

Chen et al., 2005); however, it is limited to ATPases and

GTPases. Although the relatively large size of the kinase

family makes this approach fairly general, additional

methods are required in order to probe the functions of

a wider array of proteins.

To this end, investigators have devised alternative strat-

egies to perturb protein function by taking advantage of

existing cellular processes (Banaszynski and Wandless,

2006). Varshavsky and coworkers’ recognition that a pro-

tein’s intrinsic stability is in part dependent upon its N-ter-

minal residue (Bachmair et al., 1986) resulted in the genesis

of several methods to control the function of a protein of

interest in a general manner. Szostak and coworkers

showed that a small peptide sequence could be fused to

the N terminus of a protein of interest, and that fusion of

this degron resulted in decreased stability of that protein

in yeast (Park et al., 1992). Varshavsky and coworkers

then isolated a temperature-sensitive dihydrofolate reduc-

tase degron with a greatly reduced half-life at nonpermis-

sive temperatures (Dohmen et al., 1994), enabling studies
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of essential proteins in yeast (Labib et al., 2000; Kanemaki

et al., 2003). More recently, several researchers have engi-

neered systems in which dimeric small molecules are used

to conditionally target fusion proteins for degradation

through induced localization to either an E3 ligase complex

or to the proteasome itself (Schneekloth et al., 2004; Janse

et al., 2004). However, these systems either require a prior

knowledge of high-affinity ligands for the protein of interest

or are restricted to engineered yeast strains.

An alternative approach for controlling protein function

is to perturb subcellular localization. Several technologies

achieve small-molecule regulation of protein localization

by taking advantage of the FKBP�rapamycin�FRB ternary

complex (Kohler and Bertozzi, 2003; Inoue et al., 2005).

Fusions of proteins of interest can be made to either

FKBP or a small domain of the mTOR protein called

FRB, and colocalization is induced upon addition of the

small molecule rapamycin. Because of rapamycin’s inher-

ent biological activity, researchers have developed a

‘‘bump-hole’’ strategy similar to that employed by Shokat

and coworkers. Rapamycin derivatives possessing large

substituents at the FRB binding interface bind poorly to

wild-type FRB and in turn bind poorly to the biologically

relevant target mTOR, with binding restored upon intro-

duction of compensatory cavity-forming mutations in

FRB. Specifically, a C20-methallyl-rapamycin derivative

(MaRap) binds to a triple mutant of FRB called FRB*

(Liberles et al., 1997). We recently fused GSK-3b to FRB*

with the goal of using MaRap to conditionally mislocalize

GSK-3b from the nucleus (Stankunas et al., 2003). Inter-

estingly, we noticed decreased levels of the GSK-3b-

FRB* fusion relative to an otherwise identical fusion with

wild-type FRB. Levels of the FRB* fusion protein were

rescued upon addition of MaRap.

Although fusion to FRB* confers instability to multiple

different proteins in the absence of MaRap, this chance

observation of conditional stabilization is less than ideal.

First, two proteins (FKBP and FRB) are required to stabi-

lize the protein of interest. A second and more troubling

problem is that of the ligand itself. MaRap is expensive,

difficult to synthesize and formulate, and exhibits poor

pharmacokinetics in vivo. The inaccessibility of the stabi-

lizing ligand makes widespread implementation of this

technology unlikely. Nevertheless, FRB* serves as proof-

of-concept that the ligand-dependent stability of one pro-

tein can predictably affect the stability of a fused partner

protein.

We thus set out to develop a ‘‘single ligand-single do-

main’’ system that would allow conditional small-molecule

control of protein stability. We envisioned the fusion of any

protein of interest to a ligand binding domain that is engi-

neered to be unstable, and thus degraded, in the absence

of its ligand. Binding of the ligand to this destabilizing

domain would stabilize the fusion protein and shield it

from degradation, thus restoring function to the protein

of interest (Figure 1A). Ideally, this destabilizing domain

would be capable of conferring ligand-dependent stability

to a wide variety of proteins, thus achieving generality.
996 Cell 126, 995–1004, September 8, 2006 ª2006 Elsevier Inc
We chose the FK506- and rapamycin-binding protein

(FKBP12) as a candidate destabilizing domain. This 107

residue protein has been widely studied, often in the con-

text of fusion proteins, and dozens of high-affinity ligands

for FKBP12 have been developed (Pollock and Clackson,

2002). In one study, ligands that possess a synthetic

‘‘bump’’ in the FKBP12 binding domain were shown to

bind more tightly to the cavity-forming F36V mutant rela-

tive to the wild-type protein by almost three orders of mag-

nitude (Clackson et al., 1998). Importantly, this family of

ligands does not elicit any undesired responses when ad-

ministered to cultured cells or animals including humans

(Iuliucci et al., 2001).

RESULTS

Identification of Ligand-Responsive Destabilizing

Domains

To identify mutants that display the desired ligand-depen-

dent behavior, we implemented a cell-based screen in

which the fluorescence of yellow fluorescent protein

(YFP) served as an indicator of FKBP12 stability. A library

based on the FKBP12 F36V gene sequence (hereafter

FKBP) was generated using error-prone PCR and then

cloned in-frame in front of YFP. A Moloney murine leuke-

mia retroviral expression system was used to stably inte-

grate this library of FKBP-YFP fusions into NIH3T3 fibro-

blasts, and the transduced cells were subjected to three

rounds of sorting using flow cytometry. In the first round,

cells were treated with 5 mM of the FKBP ligand SLF*

(Figure 1B) for 24 hr prior to sorting. Fluorescent cells

Figure 1. A General Method to Conditionally Control Protein

Stability

(A) Genetic fusion of a destabilizing domain (DD) to a protein of interest

(POI) results in degradation of the entire fusion. Addition of a ligand for

the destabilizing domain protects the fusion from degradation.

(B) Synthetic ligands for FKBP12 F36V.
.



were collected and further cultured in the absence of li-

gand for 60 hr. Reanalysis revealed that approximately

5% of the cell population exhibited decreased fluores-

cence levels, indicating that the majority of the sequences

were either unmutated or contained mutations that did not

affect stability of the fusion protein. This small population

of cells exhibiting decreased fluorescence was collected

and cultured once more in the presence of 5 mM SLF*

for 24 hr, at which time YFP-expressing cells were col-

lected and the genomic DNA was isolated.

Sequence analysis of 72 FKBP clones (see Table S1 in

the Supplemental Data) revealed several frequently recur-

ring mutations. Mutations were distributed fairly evenly

over the primary amino acid sequence, and localized clus-

tering on the tertiary structure was not observed. All ob-

served sequences maintained the F36V mutation and

the majority were spatially separated from the ligand bind-

ing site, suggesting that ligand binding was crucial for

selection.

Before analyzing the behavior of the individual mutants,

we synthesized a derivative of SLF* in which the carbox-

ylic acid is replaced with a morpholine group (Figure 1B).

This functional group is commonly appended to drug-

like molecules to improve their pharmacokinetic proper-

ties, and we hypothesized that its addition to SLF* in a po-

sition known not to interfere with FKBP binding would

enhance intracellular availability and improve the potency

of the stabilizing ligand. This cell-permeable FKBP ligand

is designed to protect an otherwise unstable protein

domain from degradation, so we call the morpholine-

containing ligand Shield-1 (Shld1).

Characterization of Shld1-Responsive Destabilizing

Domains

To validate the screening method and to further character-

ize ligand-responsive destabilizing domains, we chose

five mutants (F15S, V24A, H25R, E60G, and L106P) for

further analysis. Each mutant was separately transduced

into NIH3T3 cells, and YFP fluorescence levels were mea-

sured in the absence of Shld1 (Figure 2A). All five mutants

showed decreased fluorescence levels with respect to

a positive control, indicating that the mutants identified

from the library screen are indeed destabilizing. The mu-

tants exhibit varying degrees of destabilization, with the

most destabilizing mutant, L106P, expressing YFP fluo-

rescence at a level of only 1%–2% relative to the positive

control. All mutants showed increased fluorescence upon

addition of Shld1 (see Figure S1 in the Supplemental

Data), with observed efficiencies of rescue varying by

over an order of magnitude (Figure 2B). Mutant V24A

showed the most efficient rescue (EC50 �5 nM), whereas

the more destabilizing L106P required higher concentra-

tions of Shld1 (EC50 �100 nM) to stabilize the YFP fusion

protein.

In a kinetic study of NIH3T3 cells stably expressing each

destabilizing domain, we observed that YFP fluorescence

for all five mutants increased at approximately the same

rate upon addition of Shld1, with maximum fluorescence
C

achieved at 24 hr and stably maintained for at least an ad-

ditional 48 hr without further dosing of Shld1 (Figure S2).

These results imply that, upon addition of Shld1, these

FKBP mutants are able to adopt a conformation that ap-

proximates the stability of the wild-type protein, and that

increases in fluorescence are mainly a function of the

rate of protein synthesis and/or YFP maturation within

the cell. In a related experiment, NIH3T3 cells transduced

with the FKBP L106P-YFP fusion (hereafter L106P-YFP)

were treated with various concentrations of Shld1, and

YFP fluorescence was monitored as a function of time

(Figure 2C). YFP expression is observed within 15 min,

and we observe that when cells are incubated with lower

concentrations of Shld1 they achieve steady state expres-

sion levels more rapidly than cells that have been incu-

bated with higher concentrations of Shld1.

We next assayed the five destabilizing domains for ki-

netics of protein degradation. Upon withdrawal of Shld1,

we observed distinct differences in fluorescence decay

profiles among the destabilizing domains (Figure 2D).

This study revealed a correlation between the rate of deg-

radation and the degree of destabilization conferred by

each mutation. Mutant H25R, which is the least destabiliz-

ing of this group, showed the slowest rate of degradation,

whereas L106P, the most destabilizing of the five, was

degraded most quickly, with protein levels becoming

negligible within 4 hr.

To correlate YFP fluorescence with intracellular protein

levels, and to look for evidence of partial proteolysis, cells

stably expressing each destabilizing domain fused to YFP

were either mock-treated or treated with Shld1. Anti-

bodies against either FKBP12 (Figure 2E) or YFP (data

not shown) were used to immunoblot cell lysates. Neither

antibody was capable of detecting protein in lysates from

mock-treated cells expressing the mutant FKBP-YFP fu-

sions, whereas Shld1-treated cells showed strong expres-

sion of the expected fusion proteins, which correlated with

the observed fluorescence levels. F15S and L106P fu-

sions to YFP were also monitored using fluorescence

microscopy, and the predicted Shld1-dependent fluores-

cence is observed (Figure S3).

To gain additional insight into this inducible degradation

system and to understand possible limitations thereof, we

examined the mechanism of degradation for the F15S and

L106P mutants. The ubiquitin-proteasome system is a ma-

jor mediator of intracellular protein degradation (Pickart,

2004), so we treated cells expressing either F15S or

L106P fusions to YFP with either MG132 (Figure 2F) or lac-

tacystin (Figure S4). Following withdrawal of Shld1, the

inability of cells to degrade the fusions in the presence

of proteasome inhibitors suggests that the degradation

of the YFP fusion proteins is mediated, at least in part,

by the proteasome.

RNA interference (RNAi) has become a widely used tool

for reducing intracellular levels of a protein of interest,

so we wanted to compare the rate of RNAi-mediated

silencing of an endogenous gene to the rate of degrada-

tion achieved through fusion of a protein of interest to a
ell 126, 995–1004, September 8, 2006 ª2006 Elsevier Inc. 997



Figure 2. Characterization of FKBP

Mutants that Display Shld1-Dependent

Stability

(A) Fluorescence of FKBP-YFP fusions ex-

pressed in NIH3T3 cells in the absence of

Shld1 as determined by flow cytometry. (B)

NIH3T3 cells stably expressing FKBP-YFP

fusions were treated with 3-fold dilutions of

Shld1 (1 mM to 0.1 nM) and monitored by flow

cytometry. (C) NIH3T3 cells stably expressing

FKBP-YFP fusions were either mock-treated

(circles) or treated with 30 nM (squares), 100

nM (diamonds), 300 nM (crosses), or 1 mM (tri-

angles) Shld1. Increases in fluorescence were

monitored over time using flow cytometry.

Mean fluorescence intensity (MFI) was normal-

ized to 100% at 24 hr, 1 mM Shld1. (D) NIH3T3

cells stably expressing FKBP-YFP fusions

were treated with 1 mM Shld1 for 24 hr, at which

point the cells were washed with media to

remove Shld1, and decreases in fluorescence

were monitored using flow cytometry. Data

for panels (A) through (D) are presented as the

average MFI ± SEM relative to that of the max-

imum fluorescence intensity observed for the

individual mutant. Experiments were per-

formed in triplicate.

(E) FKBP-YFP fusions were either mock-

treated or treated with 1 mM Shld1 for 24 hr

and immunoblotted with an anti-FKBP anti-

body.

(F) NIH3T3 cells stably expressing F15S-YFP

and L106P-YFP were treated with 1 mM Shld1

for 24 hr. Cells were then washed with media

and treated with 10 mM MG132 in the presence

or absence of 1 mM Shld1 for 4 hr. Immunoblot-

ting was performed with an anti-YFP antibody.

(G) HeLa cells were transfected with siRNA

against lamin A/C and monitored over time.

Time required for knockdown of lamin A/C is

compared against time required for degrada-

tion of L106P-YFP upon removal of Shld1

from NIH3T3 cells stably expressing the fusion.
destabilizing domain. Lamin A/C is a nonessential cyto-

skeletal protein commonly used as a control in RNAi ex-

periments. Previous studies have shown more than 90%

reduction in lamin A/C expression in HeLa cells assayed

40 to 45 hr after transfection with a cognate siRNA duplex

(Elbashir et al., 2001). This suggests that the half-life of the

lamin A/C proteins is no more than 10 to 12 hr, which is

significantly shorter than that of green fluorescent protein

(t1/2 = 26 hr, Corish and Tyler-Smith, 1999). When HeLa

cells were transfected with siRNA against lamin A/C, we

began to observe a decrease in protein levels after 24

hr, with a significant reduction in lamin A/C observed by

48 hr (Figure 2G, Figure S5). In contrast, cells stably ex-

pressing L106P-YFP show nearly complete degradation

of the fusion within 4 hr of removal of Shld1, illustrating
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that fusion of a destabilizing domain to a protein of interest

dramatically reduces its stability in cultured cells.

Predictable Regulation of Intracellular Protein Levels

Taken together, these data show that we have identified

ligand-sensitive mutants of FKBP, and they further sug-

gest that we may be able to predictably regulate YFP

levels with excellent temporal control. To test this theory,

we subjected a population of NIH3T3 cells stably express-

ing L106P-YFP to various concentrations of Shld1 over

the course of 1 week (Figure 3). The dose-dependent

control that this technology offers is exemplified by the

proximity of the observed fluorescence levels to values

predicted from the dose-response experiments shown in

Figure 2B. This level of control could prove invaluable
c.



Figure 3. Fusion of an FKBP Destabilizing Domain to the N Terminus of YFP Results in Predictable and Reversible Small-Molecule

Regulation of Intracellular Protein Levels

A population of NIH3T3 cells stably expressing L106P-YFP was treated with varying concentrations of Shld1 over the course of one week, and

samples of the population were assayed by flow cytometry at the indicated time points. Data are presented as the average mean fluorescence

intensity ± SEM relative to that of the maximum fluorescence intensity observed for L106P-YFP. Predicted fluorescence is based upon the dose

response experiment shown in Figure 2B. The experiment was performed in triplicate.
when the biological function of a protein of interest de-

pends upon its intracellular concentration (Niwa et al.,

2000; Pan et al., 2005).

Identification and Characterization of C-Terminal

Destabilizing Domains

Many proteins can accommodate fusions at their N termini

without loss of function; however, in some cases the intrin-

sic protein structure or requirements for posttranslational

modifications may prohibit N-terminal fusions. Reversing

the orientation of FKBP and YFP, we performed a screen

of a YFP-FKBP library to identify several candidate C-ter-

minal destabilizing domains (Table S2). From these candi-

date domains, we chose six FKBP mutants (M66T, R71G,

D100G, D100N, E102G, and K105I) for further analysis. At

the same time, we tested the ability of the L106P destabi-

lizing domain to confer ligand-dependent stability when

placed at the C terminus of a protein of interest. Overall,

destabilizing domains fused to the C terminus of YFP

are less destabilizing than their N-terminal counterparts

(Table S3). For example, when the L106P mutant is fused

to the N terminus of YFP (L106P-YFP), fluorescence is

only �1%–2% of that observed in the presence of

Shld1; however, when the orientation is reversed (YFP-

L106P), fluorescence in the absence of Shld1 is �10%

of that observed in its presence. Interestingly, L106P at

the C terminus of YFP is as destabilizing as any mutant

identified through our screening process.

Both C-terminal and N-terminal destabilizing domains

respond similarly to Shld1, with EC50s ranging from

10 nM to 100 nM (Figure S6). As observed with N-terminal

destabilizing domains, all mutants exhibit nearly identical

rates of increase in fluorescence upon addition of Shld1,

regardless of the degree of instability conferred (Fig-

ure S7). Again, rates of fluorescence decay upon removal

of Shld1 could be correlated with the relative degree of de-

stabilization conferred by each mutant (Figure S8), with
C

levels of the most destabilizing domains (D100G and

L106P) becoming negligible within 8 hr.

Destabilizing Domains Confer Shld1-Dependent

Stability in Multiple Cells Lines

These destabilizing domains appear to be quite effective

in the context of transduced fibroblasts, so we wanted to

ensure that the same behavior would be observed upon

transient introduction of the fusions into a variety of differ-

ent cell types. We therefore tested our destabilizing do-

mains fused to either the N or C terminus of YFP in several

commonly used cell lines (NIH3T3, HEK 293T, HeLa, and

COS-1) using transient transfection to introduce the chi-

meric gene. Shld1-dependent fluorescence is observed

(Table 1), demonstrating that ligand-dependent stability

is not restricted to one cell type. Additionally, these

FKBP-derived destabilizing domains can be stabilized by

commercially available ligands such as FK506 (Figure S9),

keeping in mind that FK506, unlike Shld1, will perturb the

cellular environment by inhibiting calcineurin.

Destabilizing Domains Confer Shld1-Dependent

Stability to a Variety of Proteins

Although the FKBP mutants are efficient destabilizing do-

mains for YFP, it was unclear if this behavior could be used

to target other proteins of interest that perform more rele-

vant cellular functions. In choosing candidates, we aimed

to target proteins of various characteristics (e.g., size, fold,

function, and cellular localization). Using the F15S and

L106P destabilizing domains fused at the N termini,

Shld1-dependent stability is conferred to the kinases

GSK-3b and CDK1, the cell cycle regulatory proteins

securin and p21, and three small GTPases, Rac1, RhoA,

and Cdc42 (Figure 4A). Interestingly, we were able to in-

duce degradation of an otherwise stable protein (CDK1)

and stabilize relatively short-lived cell cycle regulators

(p21 and securin), proteins that are normally targeted

for degradation by the APC complex (Nigg, 2001). When
ell 126, 995–1004, September 8, 2006 ª2006 Elsevier Inc. 999



either the D100G or L106P destabilizing domain was fused

to the C terminus of the transcription factor CREB or the

small GTPases Arf6 and Arl7, we observed Shld1-depen-

dent stability of these fusion proteins (Figure 4B). To date,

we have tested 14 proteins and all have shown ligand-

dependent stability when expressed in NIH3T3 cells.

The ability to regulate the function of membrane-bound

proteins would allow greater understanding of a range of

physiological processes. When CD8a, a transmembrane

glycoprotein found on the surface of T cells, was fused at

its C terminus to either the D100G or L106P destabilizing

domain and expressed in NIH3T3 cells, we were able to

elicit Shld1-dependent expression as assayed by flow

cytometry (Figure 5). We observed a decrease in CD8a

levels at the cell surface upon removal of Shld1, suggest-

ing that the FKBP destabilizing domains possess the ability

Table 1. Fluorescence of FKBP-YFP Fusions in the
Absence of Shld1 in Transiently Transfected Cell Lines

Percent residual YFP fluorescence*

FKBP-YFP YFP-FKBP

F15S L106P D100G L106P

NIH3T3 7 8 16 16

HEK 293T 7 5 15 19

HeLa 8 6 9 12

COS-1 12 19 22 26

* Data are presented as the average mean fluorescence inten-
sity relative to that of the maximum fluorescence intensity ob-

served for the individual mutant. The experiment was per-

formed in duplicate.
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to recruit the cellular proteins necessary for internalization

of membrane-bound proteins (Hicke and Dunn, 2003), pre-

sumably leading to degradation of the CD8a-FKBP fusion.

Shld1-Dependent Control of Cellular Phenotypes

We next sought to correlate changes in cellular behavior

with the Shld1-dependent stabilization of a specific pro-

tein. Expression of constitutively active small GTPases

causes well-characterized changes in cellular morphology

(Heo and Meyer, 2003), and intracellular levels of small

GTPases fused to destabilizing domains are Shld1-

dependent (Figures 4A and 4B). NIH3T3 cells were individ-

ually transduced with L106P-RhoA, L106P-Cdc42, or Arl7-

L106P, mock-treated or treated with Shld1, and visualized

using confocal microscopy (Figure 6). Shld1-treated pop-

ulations displayed the predicted morphologies. Expres-

sion of RhoA induces the formation of stress fibers, ex-

pression of Cdc42 results in filopodia formation, and

expression of Arl7 induces the shrunken cell phenotype

(Heo and Meyer, 2003). These GTPase-dependent mor-

phology changes were reversible, as treatment with

Shld1 followed by removal of Shld1 resulted in fibro-

blast-like morphologies in transduced cells that were

indistinguishable from the morphologies observed for

mock-treated transduced cells. The penetrance of the ob-

served phenotype was high, with a large percentage of

cells (>90%) exposed to a given experimental condition

displaying the predicted behavior (Figure S10).

DISCUSSION

Modern experimental biology often relies on the perturba-

tion of a gene followed by observation of the resulting
Figure 4. FKBP Destabilizing Domains Confer Shld1-Dependent Stability to a Variety of Proteins

(A) FKBP mutants F15S and L106P were fused to the N termini of several different proteins and transduced into NIH3T3 cells. Cell populations stably

expressing the fusions were then either mock-treated or treated with 1 mM Shld1, and cell lysates were immunoblotted with antibodies against the

protein of interest. Endogenous proteins are shown as loading controls when detected, and Hsp90 serves this purpose in cases where they are not

detected.

(B) FKBP mutants D100G and L106P were fused to the C termini of several different proteins of interest and treated as above.
nc.



phenotype to elucidate gene function. The success of

a given experimental approach is often a function of the

quality of the perturbation as well as the richness of the

technique used for observation. RNAi has become an

integral tool for biologists for probing the functions of

various proteins and pathways (Medema, 2004). One fea-

ture that makes RNAi so attractive is its relative ease of

application. Theoretically, one need only know the gene

sequence encoding a protein of interest to design short

RNA sequences capable of catalyzing the degradation

of the mRNA encoding that protein. After its initial discov-

ery in C. elegans, implementation of RNAi in cultured

mammalian cells proved difficult due to the challenges

of introducing the RNA sequences capable of entering

the RNAi pathway. However, a variety of techniques de-

signed to introduce RNAi effectors into mammalian cells

have emerged (e.g., synthetic siRNA, plasmid-encoded

shRNA, enzymatically diced pools of RNA), allowing

RNAi to become widely used in mammalian cells

(Medema, 2004).

Despite its general utility, RNAi is not ideal. Some as-

pects of the silencing mechanism are poorly understood,

making the design of appropriate RNA silencing elements

a nontrivial task. The success rate for synthetic siRNAs is

typically one in four, with some genes proving more diffi-

cult to silence, perhaps due to the accessibility or stability

of the messenger RNA. Diced pools improve the ‘‘hit rate’’

of silencing, but they also increase the occurrence of off-

target effects. Once an effective RNA sequence has been

Figure 5. Destabilizing Domains Confer Shld1-Dependent

Stability to a Transmembrane Protein

FKBP mutants D100G and L106P were fused to the C terminus of

CD8a, and NIH3T3 cells stably expressing the fusions were split into

three pools. The first population (�) was mock-treated and the second

population (+) was treated with 1 mM Shld1 for 24 hr. The third popula-

tion (+/�) was treated with 1 mM Shld1 for 24 hr, then washed with me-

dia and cultured for 24 hr in the absence of Shld1. Live cells were then

probed with a FITC-conjugated anti-CD8a antibody and assayed by

flow cytometry. Data are presented as the average mean fluorescence

intensity ± SEM from an experiment performed in triplicate.
Ce
identified, the extent of mRNA degradation can be vari-

able, and in many cases significant amounts of protein ex-

pression are maintained. Reliably introducing RNA into

cells is not trivial, and populations of cells that have

been transfected with a silencing RNA typically show het-

erogeneous responses as the extent of RNA delivery can

vary significantly between members of a population. Per-

haps the greatest disadvantage of RNAi is the time re-

quired to reduce protein levels below a functional thresh-

old. The efficacy of the chosen RNA silencing element

toward its target message plays a role in this equation;

however, the major determinant affecting the rate of

knockdown is the half-life of the protein of interest, with

48 hr being a typical timeframe required for significant

knockdown of protein levels (Raab and Stephanopoulos,

2004).

An ideal technique to perturb biological macromole-

cules would be specific, fast, reversible, and tunable.

Cell-permeable small molecules often deliver the latter

three characteristics, but apart from a few well-known ex-

ceptions, they are not typically specific for one biological

target. The ideal perturbation technology combines the

specificity of reverse genetics (i.e., well-defined DNA

changes in a large genomic background) with the condi-

tionality of cell-permeable small molecules.

Using a small library of FKBP mutants (20,000 to 30,000

members) and a cell-based screen, we have identified

several small (107 residues) FKBP-derived destabilizing

domains that, when fused to their partners, are capable of

Figure 6. Stabilization of Specific Proteins with Shld1 Results

in Predictable Changes in Cellular Morphologies

NIH3T3 cells stably expressing fusions of a constitutively active small

GTPase to the L106P destabilizing domain were split into three pools.

The first population (�) was mock-treated and the second population

(+) was treated with 1 mM Shld1 for 24 hr. The third population (+/�)

was treated with 1 mM Shld1 for 24 hr, then washed with media and

cultured in the absence of Shld1 for 24 hr (RhoA Q63L) or 48 hr

(Cdc42 Q61L, Arl7 Q72L). Cells were serum-starved for 12 hr, fixed,

stained with Alexa Fluor 488-conjugated phalloidin, and visualized

using confocal microscopy.
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conferring ligand-dependent stability to a variety of other

proteins. Stability, and therefore function, of the resulting

fusion protein is induced upon addition of a cell-permeable

high-affinity ligand. When the most destabilizing mutant

from our screen, FKBP L106P, is fused to YFP, the fusion

protein is expressed at only�1%–2% of its maximum level

in the absence of the stabilizing ligand, and this fusion

protein is fully stabilized by 1 mM Shld1. However, lower

concentrations of Shld1 may be sufficient to restore

expression levels that would allow a physiologically rele-

vant protein of interest to perform its cellular function

(Figure 2C).

Turnover is quite rapid upon removal of Shld1, with

levels of the L106P mutant becoming negligible within 4

hr. We have shown that the FKBP-derived destabilizing

domains confer ligand-dependent stability to cytoplasmic

proteins, nuclear proteins, and a transmembrane protein,

indicating that this might be a general method with which

to perturb protein function. One of the biophysical revela-

tions from this study is the size of the sequence space for

protein domains that exhibit the desired ligand-dependent

stability. The abundance of mutants that display ligand-

dependent stability suggests that further refinements in

screening may lead to additional destabilizing domains

selected for various properties (e.g., rate of degradation,

potency of stabilization, and subcellular localization).

The destabilizing domains confer ligand-dependent

stability when fused to either the N or the C terminus of

a protein of interest, although the N-terminal fusions ap-

pear to exhibit a stronger destabilizing effect on the fusion

proteins. This observation may reflect a context-depen-

dent ability of the degradation machinery to recognize un-

stable protein domains. Alternatively, the observed dis-

crepancies in the degree of destabilization conferred by

N- and C-terminal destabilizing domains may indicate in-

dependent mechanisms of recognition and/or degrada-

tion. Additional mechanistic studies should be able to

discriminate between these and other alternatives. The

proteasome-mediated degradation process appears to

be processive, as we have not observed any evidence of

partial degradation of any fusion proteins.

Destabilizing domains not only function in virally trans-

duced NIH3T3 fibroblasts, but they also confer Shld1-de-

pendent stability to fusion proteins in a variety of cell lines,

including human, upon transient introduction of the ge-

netic fusions. We did, however, observe slight increases

in residual fluorescence in the absence of Shld1, which

might be attributed to the broader range of expression

levels observed upon transient transfection versus viral

transduction. It is possible that a small percentage of cells

are expressing high levels of a constitutively unstable

fusion that may in turn compromise function of the protea-

some (Bence et al., 2001).

The use of a small-molecule regulator of protein stability

allows one to rapidly and predictably regulate protein

levels within a cell, allowing unprecedented control of

protein function. The excellent dose and temporal control

this technology offers is illustrated by our ability to regulate
1002 Cell 126, 995–1004, September 8, 2006 ª2006 Elsevier In
L106P-YFP stability over an extended period of time (Fig-

ure 3). The predicted expression levels were inferred from

the simple dose-response curve shown in Figure 2B.

When the Shld1 concentration is changed, the rates at

which the predicted YFP levels are achieved are probably

nonlinear and faster than those shown in Figure 3.

One of the most labor-intensive but minimally perturb-

ing applications of this technology would be to create

knockin mice expressing Shld1-dependent alleles of

a protein of interest. Expression of the fusion protein

would be driven by the endogenous promoter, ideally re-

producing the spatial and temporal expression patterns

of the unmodified gene. The ligand could be given regu-

larly to stabilize the fusion protein until the mice achieved

the age of experimental interest. Withdrawal of Shld1

should result in rapid but reversible loss of the fusion pro-

tein. Unlike Cre-mediated gene disruption, this method

is reversible. Re-addition of Shld1 stabilizes the fusion

protein and reverses the effects of ligand withdrawal,

allowing rapid, reversible, and conditional control of pro-

tein function in a complex system.

In its most simple implementation, this strategy appears

to be a ‘‘drug-on’’ strategy. The stabilizing ligand must be

present for expression of the desired fusion protein. How-

ever, if one expresses a protein that exhibits a dominant-

negative phenotype, the system can be implemented in

a ‘‘drug-off’’ manifold. In this configuration, addition of

Shld1 results in stabilization of the fusion protein and

loss of function of the target protein. A similar situation

could be imagined if a constitutively active variant of

a protein (e.g., oncogene) was placed under the control

of a ligand-responsive fusion protein (Figure 6). In these

experimental configurations, the addition of ligand rather

than its withdrawal triggers the experimental event.

Recently, investigators screening libraries of synthetic

small molecules have discovered inhibitors for several

proteins of interest (Mayer et al., 1999; Tan, 2005). In at

least one respect, destabilizing domains are not as porta-

ble as a library-derived small molecule or RNAi, which, at

least in theory, can be applied to any cell type or organism

of interest without molecular biological intervention. In

order to implement our approach, investigators must de-

termine if the protein of interest retains its intrinsic func-

tion(s) in the context of a fusion protein. Then, the destabi-

lizing domain must be either knocked in to an endogenous

gene or expressed as a transgene, with the possibility that

the endogenous alleles of the protein of interest, if present,

may complicate interpretation of the studies. However,

the dividend of these genetic interventions is specificity.

The discovery of a small-molecule activator or inhibitor

from a large pool of candidates in itself is a significant

accomplishment; however, proving the specificity of the

observed perturbation is an even more formidable task.

In contrast, the genetic fusion of our destabilizing domain

to any protein of interest ensures the specificity of our

approach while maintaining the speed, reversibility, and

tunability inherent to small-molecule control but lacking

in RNAi.
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EXPERIMENTAL PROCEDURES

FKBP Library Generation

Diversity in the FKBP sequence was generated using a combination of

error-prone PCR and nucleotide analog mutagenesis. Primers for mu-

tagenic PCR were designed to anneal upstream of the 50 restriction site

to be used for cloning the mutagenesis products into the pBMN

iHcRed-tandem retroviral expression vector and to anneal down-

stream of the 30 restriction site. Three independent condition sets

were used to generate diversity. Condition set A utilized 4 ng template,

0.5 mM of each oligonucleotide primer, 5 units Taq polymerase, 5 mM

MgCl2, 0.2 mM MnCl2, 0.4 mM dNTPs in equal ratio, and an excess

of 0.2 mM dATP and dCTP. Condition set B was identical to A, except

that dGTP and dTTP were present in excess. Condition set C utilized

the nonnatural nucleotides 8-oxo-dGTP and dPTP to encourage nucle-

otide misincorporation (Zaccolo et al., 1996). The FKBP libraries were

pooled and ligated into the pBMN iHcRed-t retroviral expression

vector, affording a library containing �3 3 104 members.

FKBP Synthetic Ligands

SLF* and Shld1 were synthesized essentially as described (Holt et al.,

1993; Yang et al., 2000). Reagent requests should be directed to the

corresponding author.

Cell Culture, Transfections, and Transductions

The NIH3T3 cell line was cultured in DMEM supplemented with 10%

heat-inactivated donor bovine serum (Invitrogen), 2 mM glutamine,

100 U/mL penicillin, and 100 mg/mL streptomycin. All other cell lines

werecultured with 10%heat-inactivated fetalbovineserum (Invitrogen),

2 mM glutamine, 100 U/mL penicillin, and 100 mg/mL streptomycin.

The FNX ecotropic packaging cell line was transfected using stan-

dard Lipofectamine 2000 protocols. Viral supernatants were harvested

48 hr posttransfection, filtered, and concentrated 10-fold using an

Amicon Ultra centrifugal filter device (Millipore, 100 kDa cutoff).

NIH3T3 cells were incubated with the concentrated retroviral superna-

tants supplemented with 4 mg/mL polybrene for 4 hr at 37�C. Cells

were washed once with PBS and cultured in growth media for 24 to

36 hr to allow for viral integration, then assayed as described.

HeLa cells were plated at 7 3 104 cells per well of a 24-well plate

12 hr prior to transfection. Cells were transfected with either 200 ng

Silencer Lamin A/C siRNA (Ambion) or a negative control siRNA using

the GeneSilencer protocol. Cell lysates were immunoblotted with an

anti-lamin A/C antibody (Clone 14, BD Transduction Laboratories).

Flow Cytometry

Twenty-four hours prior to analysis, transduced NIH3T3 cells were

plated at 1 3 105 cells per well of a 12-well plate and treated as de-

scribed. Cells were removed from the plate using PBS + 2 mM

EDTA, washed once with PBS, and resuspended in 200 ml PBS. Cells

were analyzed at the Stanford Shared FACS Facility using FlasherII

with 10,000 events represented.

Protein of Interest Origin and Antibodies

Proteins tested as fusions to destabilizing domains were of the follow-

ing origin, and the following antibodies were used for immunoblotting:

Arf6 Q67L (human, 3A-1, Santa Cruz Biotechnology); Arl7 Q72L (hu-

man, BC001051, Protein Tech Group, Inc.); Cdc42 Q61L (human, P1,

Santa Cruz Biotechnology); CD8a (mouse, 5H10, Caltag Laboratories);

CDK1 (human, H-297, Santa Cruz Biotechnology); CREB (mouse,

86B10, Cell Signaling Technology); FKBP (human, 2C1-97, BD Phar-

Mingen); GSK-3b (mouse, 0011-A, Santa Cruz Biotechnology); Hsp90

(mouse, 68, BD Transduction Laboratories); p21 (human, H-164, Santa

Cruz Biotechnology); Rac1 Q61L (human, C-11, Santa Cruz Biotech-

nology); RhoA Q63L (human, 26C4, Santa Cruz Biotechnology);

Securin (human, Z23.YU, Zymed Laboratories); YFP, Aequorea victoria

(JL-8, Clontech).
Ce
Phalloidin Staining and Microscopy

NIH3T3 cells stably expressing constitutively active GTPases fused to

destabilizing domains were treated with 1 mM Shld1 for 24 hr. At this

time, cells were washed once with PBS and plated at 8 3 103 cells in

4-well LabTek Chambered coverglass (NUNC) coated with 1 mg/ml

poly-D-lysine (Sigma). Mock-treated transduced cells and transduced

cells treated with 1 mM Shld1 were plated likewise as negative and pos-

itive controls, respectively. Cells were cultured for 24 hr in 10% DBS,

then cultured in serum-free media for 12 hr. Cells were then washed

with PBS, fixed in 4% paraformaldehyde for 15 min, permeabilized in

0.2% Triton X-100 for 5 min, stained with 1 mg/ml Alexa Fluor 488-con-

jugated phalloidin (Invitrogen; A12379) in PBS for 20 min, and washed

with PBS. Fixed cells were imaged using a Bio-Rad Radiance 2100

confocal microscope.

Supplemental Data

Supplemental Data include three tables and ten figures and can be

found with this article online at http://www.cell.com/cgi/content/full/

126/5/995/DC1/.
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