176 research outputs found

    Key exchange with the help of a public ledger

    Full text link
    Blockchains and other public ledger structures promise a new way to create globally consistent event logs and other records. We make use of this consistency property to detect and prevent man-in-the-middle attacks in a key exchange such as Diffie-Hellman or ECDH. Essentially, the MitM attack creates an inconsistency in the world views of the two honest parties, and they can detect it with the help of the ledger. Thus, there is no need for prior knowledge or trusted third parties apart from the distributed ledger. To prevent impersonation attacks, we require user interaction. It appears that, in some applications, the required user interaction is reduced in comparison to other user-assisted key-exchange protocols

    Scalar-tensor cosmologies: fixed points of the Jordan frame scalar field

    Full text link
    We study the evolution of homogeneous and isotropic, flat cosmological models within the general scalar-tensor theory of gravity with arbitrary coupling function and potential. After introducing the limit of general relativity we describe the details of the phase space geometry. Using the methods of dynamical systems for the decoupled equation of the Jordan frame scalar field we find the fixed points of flows in two cases: potential domination and matter domination. We present the conditions on the mathematical form of the coupling function and potential which determine the nature of the fixed points (attractor or other). There are two types of fixed points, both are characterized by cosmological evolution mimicking general relativity, but only one of the types is compatible with the Solar System PPN constraints. The phase space structure should also carry over to the Einstein frame as long as the transformation between the frames is regular which however is not the case for the latter (PPN compatible) fixed point.Comment: 21 pages, 4 figures, some comments and references adde

    Pulsed laser deposited KNbO3_3 thin films for applications in high frequency range

    No full text
    Potassium niobate thin films were grown by pulsed laser deposition on various substrates. Influence of deposition conditions on film characteristics was studied. Structural investigation evidenced that single phase polycrystalline randomly oriented films were grown on sintered alumina whereas epitaxial films were grown on (100)SrTiO3_3 and (100)MgO substrates. The microstructure was highly controlled by the structural characteristics. Interdigited capacitors built from KNbO3 films on two different substrates (alumina and MgO) showed the strong influence of the structural characteristics on the dielectric behavior. The variation of the equivalent capacitance measured on the interdigital capacitor on MgO was 6.4% at 2.5 GHz while it was 1.5% on alumina, in both cases for a moderate applied field of \sim15 kV cm1^{-1}. The results show the potentiality of these ferroelectric materials for use in frequency agile microwave electronics

    3D Ray Tracing Solver for Communication Blackout Analysis in Atmospheric Entry Missions

    Get PDF
    During the atmospheric entry phase at hypersonic speed, the radio communication from/to a space vehicle can be disrupted due to the formation of a plasma sheath within the surrounding flow field. In order to characterize such communication blackout phases, this work presents a numerical methodology combining Computational Fluid Dynamic (CFD) simulations of ionized chemically reacting entry flows by means of Computational Object-Oriented Libraries for Fluid Dynamics (COOLFluiD) and a ray tracing analysis by means of the newly developed BlackOut RAy Tracer (BORAT). The latter is based on the numerical solution of the 3D Eikonal system of equations, offering a fast, efficient and accurate method to analyse the interaction between electromagnetic signals and weakly ionised plasmas. The proposed methodology, and BORAT in particular, is first verified on popular benchmark cases and then used to analyse the European Space Agency (ESA) 2016 ExoMars Schiaparelli entry flight into Martian environment. The corresponding results demonstrate the validity of the proposed ray tracing approach for predicting communication blackout, where signals emitted from the on-board antenna undergo reflection and refraction from the plasma surrounding the entry vehicle, and the advantage of a 3D approach for analysing real flight configuration

    Phase Space Analysis of Quintessence Cosmologies with a Double Exponential Potential

    Full text link
    We use phase space methods to investigate closed, flat, and open Friedmann-Robertson-Walker cosmologies with a scalar potential given by the sum of two exponential terms. The form of the potential is motivated by the dimensional reduction of M-theory with non-trivial four-form flux on a maximally symmetric internal space. To describe the asymptotic features of run-away solutions we introduce the concept of a `quasi fixed point.' We give the complete classification of solutions according to their late-time behavior (accelerating, decelerating, crunch) and the number of periods of accelerated expansion.Comment: 46 pages, 5 figures; v2: minor changes, references added; v3: title changed, refined classification of solutions, 3 references added, version which appeared in JCA

    Relación entre los niveles plasmáticos de selenio y las diferentes enfermedades prostáticas

    Get PDF
    Several studies have demonstrated an inverse relation between serum selenium levels (Se) and advanced prostate cancer (PCa). Objective: To determine and compare selenium plasma levels in patients with different prostatic pathologies. Material and methods: It is a transversal, descriptive and comparative study. A sample of 64 men between 50 and 80 years old were selected for the study between 2007 and 2009. All volunteers underwent a digital rectal examination, prostate specific antigen level, ultrasound and transrectal prostate biopsy (1214 chips). Prostate cancer was subclassified according to Gleason Score. Selenium was determined indirectly by serum Glutathione peroxidase (Kit Ransel, Randox SRL, Crumlin, UK). Statistical analysis was performed using ANOVA I (p<0.05). Results: Glutathione Peroxidase level was 33.75±2.36 mg/ml in control patients. A decrease of 31.6% was observed in patients with BPH (23.08±1.57 mg/ml) and of (63.6%) in subjects with prostate cancer (12.28±1.03 mg/ml) (p<0,0001). There was no correlation with the Gleason Score. Conclusion: Serum Seleniun is lower in patients with prostatic pathologies being even more important in cancer patients regardless the Gleason Score.Fil: López Fontana, Constanza Matilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina. Universidad "Juan Agustín Maza". Facultad de Farmacia y Bioquímica; ArgentinaFil: Pérez Elizalde, R. F.. Universidad "Juan Agustín Maza". Facultad de Farmacia y Bioquímica; ArgentinaFil: Vanrell, M. C. M.. Universidad "Juan Agustín Maza". Facultad de Farmacia y Bioquímica; ArgentinaFil: Recalde, Gabriela María. Universidad "Juan Agustín Maza". Facultad de Farmacia y Bioquímica; ArgentinaFil: Uvilla, A. L.. Universidad "Juan Agustín Maza". Facultad de Farmacia y Bioquímica; ArgentinaFil: López Laur, J. D.. Universidad "Juan Agustín Maza". Facultad de Farmacia y Bioquímica; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas; Argentin

    User-made immobilities: a transitions perspective

    Get PDF
    In this paper we aim to conceptualize the role of users in creating, expanding and stabilizing the automobility system. Drawing on transition studies we offer a typology of user roles including user-producers, user-legitimators, user-intermediaries, user-citizens and user-consumers, and explore it on the historical transition to the automobile regime in the USA. We find that users play an important role during the entire transition process, but some roles are more salient than others in particular phases. Another finding is that the success of the transition depends on the stabilization of the emerging regime that will trigger upscaling in terms of the numbers of adopters. The findings are used to reflect on potential crossovers between transitions and mobilities research

    A Magnetohydrodynamic enhanced entry system for space transportation: MEESST

    Get PDF
    This paper outlines the initial development of a novel magnetohydrodynamic (MHD) plasma control system which aims at mitigating shock-induced heating and the radio-frequency communication blackout typically encountered during (re-)entry into planetary atmospheres. An international consortium comprising universities, SMEs, research institutions, and industry has been formed in order to develop this technology within the MEESST project. The latter is funded by the Future and Emerging Technologies (FET) program of the European Commission’s Horizon 2020 scheme (grant no. 899298). Atmospheric entry imposes one of the harshest environments which a spacecraft can experience. The combination of hypersonic velocities and the rapid compression of atmospheric particles by the spacecraft leads to high-enthalpy, partially ionised gases forming around the vehicle. This inhibits radio communications and induces high thermal loads on the spacecraft surface. For the former problem, spacecraft can sometimes rely on satellite constellations for communicating through the plasma wake and therefore preventing the blackout. On the other hand, expensive, heavy, and non-reusable thermal protection systems (TPS) are needed to dissipate the severe thermal loads. Such TPS can represent up to 30% of an entry vehicles weight, and especially for manned missions they can reduce the cost- efficiency by sacrificing payload mass. Such systems are also prone to failure, putting the lives of astronauts at risk. The use of electromagnetic fields to exploit MHD principles has long been considered as an attractive solution for tackling the problems described above. By pushing the boundary layer of the ionized gas layer away from the spacecraft, the thermal loads can be reduced, while also opening a magnetic window for radio communications and mitigating the blackout phenomenon. The application of this MHD-enabled system has previously not been demonstrated in realistic conditions due to the required large magnetic fields (on the order of Tesla or more), which for conventional technologies would demand exceptionally heavy and power-hungry electromagnets. High-temperature superconductors (HTS) have reached a level of industrial maturity sufficient for them to act as a key enabling technology for this application. Thanks to superior current densities, HTS coils can offer the necessary low weight and compactness required for space applications, with the ability to generate the strong magnetic fields needed for entry purposes. This paper provides an overview of the MEESST project, including its goals, methodology and some preliminary design considerations

    Adaptive Oblivious Transfer and Generalization

    Get PDF
    International audienceOblivious Transfer (OT) protocols were introduced in the seminal paper of Rabin, and allow a user to retrieve a given number of lines (usually one) in a database, without revealing which ones to the server. The server is ensured that only this given number of lines can be accessed per interaction, and so the others are protected; while the user is ensured that the server does not learn the numbers of the lines required. This primitive has a huge interest in practice, for example in secure multi-party computation, and directly echoes to Symmetrically Private Information Retrieval (SPIR). Recent Oblivious Transfer instantiations secure in the UC framework suf- fer from a drastic fallback. After the first query, there is no improvement on the global scheme complexity and so subsequent queries each have a global complexity of O(|DB|) meaning that there is no gain compared to running completely independent queries. In this paper, we propose a new protocol solving this issue, and allowing to have subsequent queries with a complexity of O(log(|DB|)), and prove the protocol security in the UC framework with adaptive corruptions and reliable erasures. As a second contribution, we show that the techniques we use for Obliv- ious Transfer can be generalized to a new framework we call Oblivi- ous Language-Based Envelope (OLBE). It is of practical interest since it seems more and more unrealistic to consider a database with uncontrolled access in access control scenarii. Our approach generalizes Oblivious Signature-Based Envelope, to handle more expressive credentials and requests from the user. Naturally, OLBE encompasses both OT and OSBE, but it also allows to achieve Oblivious Transfer with fine grain access over each line. For example, a user can access a line if and only if he possesses a certificate granting him access to such line. We show how to generically and efficiently instantiate such primitive, and prove them secure in the Universal Composability framework, with adaptive corruptions assuming reliable erasures. We provide the new UC ideal functionalities when needed, or we show that the existing ones fit in our new framework. The security of such designs allows to preserve both the secrecy of the database values and the user credentials. This symmetry allows to view our new approach as a generalization of the notion of Symmetrically PIR
    corecore