68 research outputs found

    Strain-driven elastic and orbital-ordering effects on thickness-dependent properties of manganite thin films

    Get PDF
    We report on the structural and magnetic characterization of (110) and (001) La2/3Ca1/3MnO3 (LCMO) epitaxial thin films simultaneously grown on (110) and (001)SrTiO3 substrates, with thicknesses t varying between 8 nm and 150 nm. It is found that while the in-plane interplanar distances of the (001) films are strongly clamped to those of the substrate and the films remain strained up to well above t=100 nm, the (110) films relax much earlier. Accurate determination of the in-plane and out-of-plane interplanar distances has allowed concluding that in all cases the unit cell volume of the manganite reduces gradually when increasing thickness, approaching the bulk value. It is observed that the magnetic properties (Curie temperature and saturation magnetization) of the (110) films are significantly improved compared to those of (001) films. These observations, combined with 55Mn-nuclear magnetic resonance data and X-ray photoemission spectroscopy, signal that the depression of the magnetic properties of the more strained (001)LCMO films is not caused by an elastic deformation of the perovskite lattice but rather due to the electronic and chemical phase separation caused by the substrate-induced strain. On the contrary, the thickness dependence of the magnetic properties of the less strained (110)LCMO films are simply described by the elastic deformation of the manganite lattice. We will argue that the different behavior of (001) and (110)LCMO films is a consequence of the dissimilar electronic structure of these interfaces.Comment: 16 pages, 15 figure

    Effect of band-filling and structural distortions on the Curie temperature of Fe-Mo double perovkites

    Full text link
    By means of high resolution neutron powder diffraction at low temperature we have characterized the structural details of LaxSr2xFeMoO6\rm La_{x}Sr_{2-x}FeMoO_6 (0x0.50\leq {\rm x}\leq 0.5) and CaxSr2xFeMoO6\rm Ca_{x}Sr_{2-x}FeMoO_6 (0x0.60\leq {\rm x}\leq 0.6) series of compounds. This study reveals a similar variation of the mean bond-angle \FeOMo in both series. In contrast, the mean bond-distance \FeMoO\ increases with La but not with Ca substitution. Both series also present a different evolution of the Curie temperature (TCT_C), which raises in the La series and slightly decreases in the Ca one. We thus conclude that the enhancement of TCT_C in the La series is due to the electron filling of the conduction band and a concomitant rising of the density of states at the Fermi level.Comment: Revtex, 4 Journal pages, 2 figures, 1 tabl

    Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics

    Full text link
    Roughness-insensitive and electrically controllable magnetization at the (0001) surface of antiferromagnetic chromia is observed using magnetometry and spin-resolved photoemission measurements and explained by the interplay of surface termination and magnetic ordering. Further, this surface in placed in proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across the interface between chromia and Co/Pd induces an electrically controllable exchange bias in the Co/Pd film, which enables a reversible isothermal (at room temperature) shift of the global magnetic hysteresis loop of the Co/Pd film along the magnetic field axis between negative and positive values. These results reveal the potential of magnetoelectric chromia for spintronic applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted to Nature Material

    Comparison of coherent and weakly incoherent transport models for the interlayer magnetoresistance of layered Fermi liquids

    Get PDF
    The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport and makes use of results of semi-classical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals and for Sr2RuO4.Comment: 21 pages, RevTeX + epsf, 4 figures. Published version. Subsection added. References update

    Полігонізаційна контрольована прокатка сталей для будівельних металевих конструкцій

    No full text
    It were investigated micro- and substructure processes formation with the multiple hot deformation of austenite.Изучены процессы формирования микро- и субструктуры при многократной горячей деформации аустенита.Досліджено процеси формування мікро- і субструктури в умовах багатократної гарячої деформації аустеніту
    corecore