396 research outputs found
Paired and clustered quantum Hall states
We briefly summarize properties of quantum Hall states with a pairing or
clustering property. Their study employs a fundamental connection with
parafermionic Conformal Field Theories. We report on closed form expressions
for the many-body wave functions and on multiplicities of the fundamental
quasi-hole excitations.Comment: 13 pages, Contribution to the proceedings of the NATO Advanced
Research Workshop "Statistical Field Theories" Como (Italy), June 18-23 200
Diffeomorphism Groups and Anyon Fields
We make use of unitary representations of the group of diffeomorphisms of the plane to construct an explicit field theory of anyons. The resulting anyon fields satisfy q-commutators, where q is the well-known phase shift associated with a single counterclockwise exchange of a pair of anyons. Our method uses a realization of the braid group by means of paths in the plane, that transform naturally under diffeomorphisms of R{sup 2}
Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects
We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation
in phase space. We demonstrate that it accommodates the phase space
dynamics of low dimensional dissipative systems such as the much studied Lorenz
and R\"{o}ssler Strange attractors, as well as the more recent constructions of
Chen and Leipnik-Newton. The rotational, volume preserving part of the flow
preserves in time a family of two intersecting surfaces, the so called {\em
Nambu Hamiltonians}. They foliate the entire phase space and are, in turn,
deformed in time by Dissipation which represents their irrotational part of the
flow. It is given by the gradient of a scalar function and is responsible for
the emergence of the Strange Attractors.
Based on our recent work on Quantum Nambu Mechanics, we provide an explicit
quantization of the Lorenz attractor through the introduction of
Non-commutative phase space coordinates as Hermitian matrices in
. They satisfy the commutation relations induced by one of the two
Nambu Hamiltonians, the second one generating a unique time evolution.
Dissipation is incorporated quantum mechanically in a self-consistent way
having the correct classical limit without the introduction of external degrees
of freedom. Due to its volume phase space contraction it violates the quantum
commutation relations. We demonstrate that the Heisenberg-Nambu evolution
equations for the Quantum Lorenz system give rise to an attracting ellipsoid in
the dimensional phase space.Comment: 35 pages, 4 figures, LaTe
Statistically induced phase transitions and anyons in 1D optical lattices
Anyons-particles carrying fractional statistics that interpolate between bosons and fermions-have been conjectured to exist in low-dimensional systems. In the context of the fractional quantum Hall effect, quasi-particles made of electrons take the role of anyons whose statistical exchange phase is fixed by the filling factor. Here we propose an experimental setup to create anyons in one-dimensional lattices with fully tuneable exchange statistics. In our setup, anyons are created by bosons with occupation-dependent hopping amplitudes, which can be realized by assisted Raman tunnelling. The statistical angle can thus be controlled in situ by modifying the relative phase of external driving fields. This opens the fascinating possibility of smoothly transmuting bosons via anyons into fermions and of inducing a phase transition by the mere control of the particle statistics as a free parameter. In particular, we demonstrate how to induce a quantum phase transition from a superfluid into an exotic Mott-like state where the particle distribution exhibits plateaus at fractional densities
The effects of upper and lower limb exercise on the microvascular reactivity in limited cutaneous systemic sclerosis patients
Background: Aerobic exercise in general and high intensity interval training (HIIT) specifically is known to improve vascular function in a range of clinical conditions. HIIT in particular has demonstrated improvements in clinical outcomes, in conditions that have a strong macroangiopathic component. Nevertheless, the effect of HIIT on microcirculation in systemic sclerosis (SSc) patients is yet to be investigated. Therefore, the purpose of the study was to compare the effects of two HIIT protocols (cycle and arm cranking) on the microcirculation of the digital area in SSc patients.
Methods: Thirty four limited cutaneous SSc patients (65.3 ± 11.6 years old) were randomly allocated in three groups (cycling, arm cranking and control group). The exercise groups underwent a twelve-week exercise program twice per week. All patients performed the baseline and post-exercise intervention measurements where physical fitness, functional ability, transcutaneous oxygen tension (ΔtcpO2), body composition and quality of life were assessed. Endothelial-dependent as well as-independent vasodilation were assessed in the middle and index fingers using LDF and incremental doses of acetylcholine (ACh) and sodium nitroprusside (SNP). Cutaneous flux data were expressed as cutaneous vascular conductance (CVC).
Results: Peak oxygen uptake increased in both exercise groups (p<0.01, d=1.36). ΔtcpO2 demonstrated an increase in the arm cranking group only, with a large effect, but not found statistically significant,(p=0.59, d=0.93). Endothelial-dependent vasodilation improvement was greater in the arm cranking (p<0.05, d=1.07) in comparison to other groups. Both exercise groups improved life satisfaction (p<0.001) as well as reduced discomfort and pain due to Raynaud's phenomenon (p<0.05). Arm cranking seems to be the preferred mode of exercise for study participants as compared to cycling (p<0.05). No changes were observed in the body composition or the functional ability in both exercise groups.
Conclusion: Our results suggest that arm cranking has the potential to improve the microvascular endothelial function in SSc patients. Also notably, our recommended training dose (e.g., a 12-week HIIT program, twice per week), appeared to be sufficient and tolerable for this population. Future research should focus on exploring the feasibility of a combined exercise such as aerobic and resistance training by assessing individual's experience and the quality of life in SSc patients.
Trial registration: ClinicalTrials.gov (NCT number): NCT03058887, February 23, 2017, https://clinicaltrials.gov/ct2/show/NCT03058887?term=NCT03058887&rank=1
Key words: High intensity interval training, vascular function, quality of lif
Theory of disk accretion onto supermassive black holes
Accretion onto supermassive black holes produces both the dramatic phenomena
associated with active galactic nuclei and the underwhelming displays seen in
the Galactic Center and most other nearby galaxies. I review selected aspects
of the current theoretical understanding of black hole accretion, emphasizing
the role of magnetohydrodynamic turbulence and gravitational instabilities in
driving the actual accretion and the importance of the efficacy of cooling in
determining the structure and observational appearance of the accretion flow.
Ongoing investigations into the dynamics of the plunging region, the origin of
variability in the accretion process, and the evolution of warped, twisted, or
eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in
the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres
Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training.
PURPOSE: To examine the skeletal muscle and performance responses across two different exercise training modalities which are highly applied in soccer training. METHODS: Using an RCT design, 39 well-trained male soccer players were randomized into either a speed endurance training (SET; n = 21) or a small-sided game group (SSG; n = 18). Over 4 weeks, thrice weekly, SET performed 6-10 × 30-s all-out runs with 3-min recovery, while SSG completed 2 × 7-9-min small-sided games with 2-min recovery. Muscle biopsies were obtained from m. vastus lateralis pre and post intervention and were subsequently analysed for metabolic enzyme activity and muscle protein expression. Moreover, the Yo-Yo Intermittent Recovery level 2 test (Yo-Yo IR2) was performed. RESULTS: Muscle CS maximal activity increased (P < 0.05) by 18% in SET only, demonstrating larger (P < 0.05) improvement than SSG, while HAD activity increased (P < 0.05) by 24% in both groups. Na(+)-K(+) ATPase α1 subunit protein expression increased (P < 0.05) in SET and SSG (19 and 37%, respectively), while MCT4 protein expression rose (P < 0.05) by 30 and 61% in SET and SSG, respectively. SOD2 protein expression increased (P < 0.05) by 28 and 37% in SET and SSG, respectively, while GLUT-4 protein expression increased (P < 0.05) by 40% in SSG only. Finally, SET displayed 39% greater improvement (P < 0.05) in Yo-Yo IR2 performance than SSG. CONCLUSION: Speed endurance training improved muscle oxidative capacity and exercise performance more pronouncedly than small-sided game training, but comparable responses were in muscle ion transporters and antioxidative capacity in well-trained male soccer players
Steroid hormone measurements from different types of assays in relation to body mass index and breast cancer risk in postmenopausal women: Reanalysis of eighteen prospective studies
Mechanisms, functions and ecology of colour vision in the honeybee.
notes: PMCID: PMC4035557types: Journal Article© The Author(s) 2014.This is an open access article that is freely available in ORE or from Springerlink.com. Please cite the published version available at: http://link.springer.com/article/10.1007%2Fs00359-014-0915-1Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.Biotechnology and Biological Sciences Research Council (BBSRC
Breast density and polymorphisms in genes coding for CYP1A2 and COMT: the Multiethnic Cohort
BACKGROUND: Mammographic density is a strong predictor of breast cancer risk and is increased by hormone replacement therapy (HRT). Some associations with genetic polymorphisms in enzymes involved in estrogen metabolism have been described. This cross-sectional analysis examined the relation between mammographic density and the CYP1A2*1F and COMT Val(58 )Met polymorphisms among 332 breast cancer cases and 254 controls in the Hawaii component of the Multiethnic Cohort. METHODS: Mammographic density, before diagnosis in cases, was quantified by using a validated computer-assisted method. Blood samples were genotyped by standard PCR/RFLP methods. Adjusted mean percent density was calculated by genotype using mixed models with the unstructured covariance option. RESULTS: A positive association between the C allele in the CYP1A2*1F gene and percent density, but not the dense area, was suggested (p = 0.11). The relation was limited to controls (p = 0.045), postmenopausal women not using HRT (p = 0.08), and normal weight subjects (p = 0.046). We did not observe any relation between the COMT Val(58 )Met polymorphism and breast density. CONCLUSION: The lack of an association between the CYP1A2 genotype and the size of the dense areas suggests an effect on the non-dense, i.e., fatty breast tissue. The discrepancies among studies may be due to differential susceptibility; changes in enzyme activity as a result of the CYP1A2*1F polymorphism may influence breast tissue differently depending on hormonal status. Larger studies with the ability to look at interactions would be useful to elucidate the influence of genetic variation in CYP1A2 and COMT on the risk of developing breast cancer
- …
