128 research outputs found

    First atmospheric observations of three chlorofluorocarbons

    Get PDF
    We report the first atmospheric observations of the Chlorofluorocarbons (CFCs) trifluorochloroethene, 3-chloropentafluoropropene and 4,4-dichlorohexafluoro-1-butene by means of Gas Chromatography with Electron Capture and Mass Spectrometric detection (GC-ECD-MS) in air samples taken at the Taunus Observatory operated by the University of Frankfurt (Main) and the Jungfraujoch High Altitude Research Station in Switzerland. These substances belong to a class of CFCs containing a double bond and are suspected to originate from the production and thermal degradation of widely used fluoropolymers like polychlorotrifluoroethene (PCTFE). Their atmospheric lifetimes are expected to be rather short. A quantitative calibration could only be derived for trifluorochloroethene but not for the other species by now. Thus, we use a relative sensitivity method to get a first indication of the observed atmospheric abundances. Identification was possible because of an air plume containing high concentrations of these substances. We suggest that the abundances found on this occasion originated from a local source. However, we have also observed the novel CFCs in air masses representative of background conditions, though with much lower concentrations. These species and some of their degradation products are toxic and could also be relevant for stratospheric and tropospheric ozone depletion

    Observation-based assessment of stratospheric fractional release, lifetimes, and ozone depletion potentials of ten important source gases

    Get PDF
    Estimates of the recovery time of stratospheric ozone heavily rely on the exact knowledge of the processes that lead to the decomposition of the relevant halogenated source gases. Crucial parameters in this context are fractional release factors (FRFs) as well as stratospheric lifetimes and ozone depletion potentials (ODPs). We here present data from the analysis of air samples collected between 2009 and 2011 on board research aircraft flying in the mid- and high-latitude stratosphere and infer the above-mentioned parameters for ten major source gases: CFCl3 (CFC-11), CF2Cl2 (CFC-12), CF2ClCFCl2 (CFC-113), CCl4 (carbon tetrachloride), CH3CCl3 (methyl chloroform), CHF2Cl (HCFC-22), CH3CFCl2 (HCFC-141b), CH3CF2Cl (HCFC-142b), CF2ClBr (H-1211), and CF3Br (H-1301). The inferred correlations of their FRFs with mean ages of air reveal less decomposition as compared to previous studies for most compounds. When using the calculated set of FRFs to infer equivalent stratospheric chlorine, we find a reduction of more than 20% as compared to the values inferred in the most recent Scientific Assessment of Ozone Depletion by the World Meteorological Organisation (WMO, 2011). We also note that FRFs and their correlations with mean age are not generally time-independent as often assumed. The stratospheric lifetimes were calculated relative to that of CFC-11. Within our uncertainties the ratios between stratospheric lifetimes inferred here agree with the values in recent WMO reports except for CFC-11, CFC-12 and CH3CCl3. Finally, we calculate lower ODPs than recommended by WMO for six out of ten compounds, with changes most pronounced for the three HCFCs. Collectively these newly calculated values may have important implications for the severity and recovery time of stratospheric ozone loss

    Quantification of the SF₆ lifetime based on mesospheric loss measured in the stratospheric polar vortex

    Get PDF
    Sulfur hexafluoride (SF₆) is a greenhouse gas with one of the highest radiative efficiencies in the atmosphere as well as an important indicator of transport time scales in the stratosphere. The current widely used estimate of the atmospheric lifetime of SF₆ is 3200 years. In this study we use in situ measurements in the 2000 Arctic polar vortex that sampled air with up to 50% SF₆ loss to calculate an SF₆ lifetime. Comparison of these measurements with output from the Whole Atmosphere Community Climate Model (WACCM) shows that WACCM transport into the vortex is accurate and that an important SF₆ loss mechanism, believed to be electron attachment, is missing in the model. Based on the measurements and estimates of the size of the vortex, we calculate an SF₆ lifetime of 850 years with an uncertainty range of 580–1400 years. The amount of SF₆ loss is shown to be consistent with that of HFC‐227ea, which has a lifetime of 670–780 years, adding independent support to our new SF₆ lifetime estimate. Based on the revised lifetime the global warming potential of SF₆ will decrease only slightly for short time horizons (<100 years) but will decrease substantially for time horizons longer than 2000 years. Also, the use of SF6 measurements as an indicator of transport time scales in the stratosphere clearly must account for potential influence from polar vortex air

    Newly detected ozone-depleting substances in the atmosphere

    Get PDF
    Ozone-depleting substances emitted through human activitiescause large-scale damage to the stratospheric ozone layer, and influence global climate. Consequently, the production of many of these substances has been phased out; prominent examples are the chlorofluorocarbons (CFCs), and their intermediate replacements, the hydrochlorofluorocarbons (HCFCs). So far, seven types of CFC and six types of HCFC have been shown to contribute to stratospheric ozone destruction 1,2. Here, we report the detection and quantification of a further three CFCs and one HCFC. We analysed the composition of unpolluted air samples collected in Tasmania between 1978 and 2012, and extracted from deep firn snow in Greenland in 2008, using gas chromatography with mass spectrometric detection. Using the firn data, we show that all four compounds started to emerge in the atmosphere in the 1960s. Two of the compounds continue to accumulate in the atmosphere. We estimate that, before 2012, emissions of all four compounds combined amounted to more than 74,000 tonnes. This is small compared with peak emissions of other CFCs in the 1980s of more than one million tonnes each year 2. However, the reported emissions are clearly contrary to the intentions behind the Montreal Protocol, and raise questions about the sources of these gases

    Accelerating growth of HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane) in the atmosphere

    Get PDF
    We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in air samples originating from remote regions of the atmosphere and present evidence for its accelerating growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the current northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.029 ppt per year in 2000 to 0.056 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Furthermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by a factor of three

    Acute inhalation of hypertonic saline does not improve mucociliary clearance in all children with cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known of how mucociliary clearance (MCC) in children with cystic fibrosis (CF) and normal pulmonary function compares with healthy adults, or how an acute inhalation of 7% hypertonic saline (HS) aerosol affects MCC in these same children.</p> <p>Methods</p> <p>We compared MCC in 12 children with CF and normal pulmonary function after an acute inhalation of 0.12% saline (placebo), or HS, admixed with the radioisotope <sup>99 m</sup>technetium sulfur colloid in a double-blind, randomized, cross-over study. Mucociliary clearance on the placebo day in the children was also compared to MCC in 10 healthy, non-CF adults. Mucociliary clearance was quantified over a 90 min period, using gamma scintigraphy, and is reported as MCC at 60 min (MCC60) and 90 min (MCC90).</p> <p>Results</p> <p>Median [interquartile range] MCC60 and MCC90 in the children on the placebo visit were 15.4 [12.4-24.5]% and 19.3 [17.3-27.8%]%, respectively, which were similar to the adults with 17.8 [6.4-28.7]% and 29.6 [16.1-43.5]%, respectively. There was no significant improvement in MCC60 (2.2 [-6.2-11.8]%) or MCC90 (2.3 [-1.2-10.5]%) with HS, compared to placebo. In addition, 5/12 and 4/12 of the children showed a decrease in MCC60 and MCC90, respectively, after inhalation of HS. A <it>post hoc </it>subgroup analysis of the change in MCC90 after HS showed a significantly greater improvement in MCC in children with lower placebo MCC90 compared to those with higher placebo MCC90 (p = 0.045).</p> <p>Conclusions</p> <p>These data suggest that percent MCC varies significantly between children with CF lung disease and normal pulmonary functions, with some children demonstrating MCC values within the normal range and others showing MCC values that are below normal values. In addition, although MCC did not improve in all children after inhalation of HS, improvement did occur in children with relatively low MCC values after placebo. This finding suggests that acute inhalation of hypertonic saline may benefit a subset of children with low MCC values.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01293084">NCT01293084</a></p

    Cell surface antigens in renal tumour cells: detection by immunoluminescence and enzymatic analysis

    Get PDF
    Two renal cell carcinoma cell lines (49RC 43STR and 75RC 2STR) were characterized by detection of the cell surface proteins: CD44(var), intercellular adhesion molecule-1 (ICAM-1), urokinase-type plasminogen activator (uPA) and its receptor and aminopeptidase N (APN). To detect their localization the immunoluminescent technique was used. In addition, the enzyme activity of uPA and APN was investigated in cell suspensions as well as in monolayers. The latter procedure was more advantageous since the additional use of HPLC permits a single registration of the fluorescent hydrolysis-product AMC (7-amino-4-methylcoumarin) without interference by cellular autofluorescence or non-reacted fluorescent substrate. Unlike 75RC 2STR, the cell line 49RC 43STR expressed high levels of uPA and APN. Contrary to that the cell line 75RC 2STR expressed high levels of ICAM-1 and CD44(v6), whereas 49RC 43STR showed a low level of ICAM-1 and no distinct light signal with anti-CD44(v6). The uPA activity was measured directly as well as indirectly (via plasmin) with the substrate Z-Gly-Gly-Arg-AMC. Both activator and plasmin activity were inhibited by D-Val-Phe-Lys-CMK and phenylmethylsulfonyl fluoride. The anti-catalytic antibody to uPA and that to uPA receptor were found to be inhibiting the uPA activity in a concentration-dependent manner. APN activity was assayed using alanine-p-nitroanilide. Peptidase activity was effectively inhibited by 1,10-phenanthroline and partly inhibited by ethylenediamine-tetraacetic acid. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Comparison of serious inhaler technique errors made by device-naĂŻve patients using three different dry powder inhalers: a randomised, crossover, open-label study

    Get PDF
    Background: Serious inhaler technique errors can impair drug delivery to the lungs. This randomised, crossover, open-label study evaluated the proportion of patients making predefined serious errors with Pulmojet compared with Diskus and Turbohaler dry powder inhalers. Methods: Patients ≄18 years old with asthma and/or COPD who were current users of an inhaler but naĂŻve to the study devices were assigned to inhaler technique assessment on Pulmojet and either Diskus or Turbohaler in a randomised order. Patients inhaled through empty devices after reading the patient information leaflet. If serious errors potentially affecting dose delivery were recorded, they repeated the inhalations after watching a training video. Inhaler technique was assessed by a trained nurse observer and an electronic inhalation profile recorder. Results: Baseline patient characteristics were similar between randomisation arms for the Pulmojet-Diskus (n = 277) and Pulmojet-Turbohaler (n = 144) comparisons. Non-inferiority in the proportions of patients recording no nurse-observed serious errors was demonstrated for both Pulmojet versus Diskus, and Pulmojet versus Turbohaler; therefore, superiority was tested. Patients were significantly less likely to make ≄1 nurse-observed serious errors using Pulmojet compared with Diskus (odds ratio, 0.31; 95 % CI, 0.19–0.51) or Pulmojet compared with Turbohaler (0.23; 0.12–0.44) after reading the patient information leaflet with additional video instruction, if required. Conclusions These results suggest Pulmojet is easier to learn to use correctly than the Turbohaler or Diskus for current inhaler users switching to a new dry powder inhaler
    • 

    corecore