458 research outputs found
Nature Versus Nurture: Luminous Blue Variable Nebulae in and near Massive Stellar Clusters at the Galactic Center
Three Luminous Blue Variables (LBVs) are located in and near the Quintuplet
Cluster at the Galactic Center: the Pistol star, G0.120-0.048, and qF362. We
present imaging at 19, 25, 31, and 37 {\mu}m of the region containing these
three LBVs, obtained with SOFIA using FORCAST. We argue that the Pistol and
G0.120-0.048 are identical ``twins" that exhibit contrasting nebulae due to the
external influence of their different environments. Our images reveal the
asymmetric, compressed shell of hot dust surrounding the Pistol Star and
provide the first detection of the thermal emission from the symmetric, hot
dust envelope surrounding G0.120-0.048. Dust and gas composing the Pistol
nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars.
The northern region of the Pistol nebula is decelerated due to the interaction
with the high-velocity (2000 km/s) winds from adjacent Wolf-Rayet Carbon (WC)
stars. With the DustEM code we determine that the Pistol nebula is composed of
a distribution of very small, transiently-heated grains (10-~35 {\AA}) and that
it exhibits a gradient of decreasing grain size from the south to the north due
to differential sputtering by the winds from the WC stars. Dust in the
G0.120-0.048 nebula is primarily heated by the central star; however, the
nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol
nebula, the G0.120-0.048 nebula is freely expanding into the surrounding
medium. Given independent dust and gas mass estimates we find that the Pistol
and G0.120-0.048 nebulae exhibit similar gas-to-dust mass ratios of ~310 and
~290, respectively. Both nebulae share identical size scales (~ 0.7 pc) which
suggests that they have similar dynamical timescales of ~10^5 yrs, assuming a
shell expansion velocity of v_exp 60 km/s.Comment: 18 pages, 7 figures, accepted to Ap
An Infrared Study of the Circumstellar Material Associated with the Carbon Star R Sculptoris
The asymptotic giant branch (AGB) star R Sculptoris (R Scl) is one of the
most extensively studied stars on the AGB. R Scl is a carbon star with a
massive circumstellar shell () which
is thought to have been produced during a thermal pulse event years
ago. To study the thermal dust emission associated with its circumstellar
material, observations were taken with the Faint Object InfraRed CAMera for the
SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 m. Maps of
the infrared emission at these wavelengths were used to study the morphology
and temperature structure of the spatially extended dust emission. Using the
radiative transfer code DUSTY and fitting the spatial profile of the emission,
we find that a geometrically thin dust shell cannot reproduce the observed
spatially resolved emission. Instead, a second dust component in addition to
the shell is needed to reproduce the observed emission. This component, which
lies interior to the dust shell, traces the circumstellar envelope of R Scl. It
is best fit by a density profile with where
and dust mass of
. The strong departure from an
law indicates that the mass-loss rate of R Scl has not been constant.
This result is consistent with a slow decline in the post-pulse mass-loss which
has been inferred from observations of the molecular gas.Comment: 10 pages, 10 figures, accepted to Ap
Old supernova dust factory revealed at the Galactic center
Dust formation in supernova ejecta is currently the leading candidate to
explain the large quantities of dust observed in the distant, early Universe.
However, it is unclear whether the ejecta-formed dust can survive the hot
interior of the supernova remnant (SNR). We present infrared observations of
~0.02 of warm (~100 K) dust seen near the center of the ~10,000
yr-old Sgr A East SNR at the Galactic center. Our findings signify the
detection of dust within an older SNR that is expanding into a relatively dense
surrounding medium ( ~ 100 ) and has survived the
passage of the reverse shock. The results suggest that supernovae may indeed be
the dominant dust production mechanism in the dense environment of early
Universe galaxies.Comment: 25 pages, 5 figures. Includes supplementary materials. Published
Online March 19 2015 on Science Expres
Analysing the Zenith Tropospheric Delay estimates in on-line Precise Point Positioning (PPP) services and PPP software packages
As Global Navigation Satellite System (GNSS) signals travel through the troposphere, a tropospheric delay occurs due to a change in the refractive index of the medium. The Precise Point Positioning (PPP) technique can achieve centimeter/millimeter positioning accuracy with only one GNSS receiver. The Zenith Tropospheric Delay (ZTD) is estimated alongside with the position unknowns in PPP. Estimated ZTD can be very useful for meteorological applications, an example is the estimation of water vapor content in the atmosphere from the estimated ZTD. PPP is implemented with different algorithms and models in online services and software packages. In this study, a performance assessment with analysis of ZTD estimates from three PPP online services and three software packages is presented. The main contribution of this paper is to show the accuracy of ZTD estimation achievable in PPP. The analysis also provides the GNSS users and researchers the insight of the processing algorithm dependence and impact on PPP ZTD estimation. Observation data of eight whole days from a total of nine International GNSS Service (IGS) tracking stations spread in the northern hemisphere, the equatorial region and the southern hemisphere is used in this analysis. The PPP ZTD estimates are compared with the ZTD obtained from the IGS tropospheric product of the same days. The estimates of two of the three online PPP services show good agreement (<1 cm) with the IGS ZTD values at the northern and southern hemisphere stations. The results also show that the online PPP services perform better than the selected PPP software packages at all stations
A Novel Approach for the Determination of the Height of the Tropopause from Ground-Based GNSS Observations
In this paper, we present a new method to calculate the height of the second lapse-rate tropopause (LRT2) using GNSS high-precision data. The use of GNSS data for monitoring the atmosphere is possible because as the radio signals propagate through the troposphere, they are delayed according to the refractive index of the path of the signal. We show that by integrating the vertical profile of the refractive index in the troposphere, we are able to determine the altitude of LTR2. Furthermore, as GNSS data is available from many stations around all latitudes of the globe and make up a network with high spatial and temporal resolution, we can monitor the diurnal cycle of the variables related to the refractive index of the path of the signal. A comparison between the heights of the LRT2 obtained with radiosonde data and with this novel method is presented in the paper, and it shows good agreement. The average difference found is ≤1 km for stations between the latitudes of 30°S and 30°N
SMART Rotor Development and Wind-Tunnel Test
Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper
- …