25,407 research outputs found
New variables, the gravitational action, and boosted quasilocal stress-energy-momentum
This paper presents a complete set of quasilocal densities which describe the
stress-energy-momentum content of the gravitational field and which are built
with Ashtekar variables. The densities are defined on a two-surface which
bounds a generic spacelike hypersurface of spacetime. The method used
to derive the set of quasilocal densities is a Hamilton-Jacobi analysis of a
suitable covariant action principle for the Ashtekar variables. As such, the
theory presented here is an Ashtekar-variable reformulation of the metric
theory of quasilocal stress-energy-momentum originally due to Brown and York.
This work also investigates how the quasilocal densities behave under
generalized boosts, i. e. switches of the slice spanning . It is
shown that under such boosts the densities behave in a manner which is similar
to the simple boost law for energy-momentum four-vectors in special relativity.
The developed formalism is used to obtain a collection of two-surface or boost
invariants. With these invariants, one may ``build" several different mass
definitions in general relativity, such as the Hawking expression. Also
discussed in detail in this paper is the canonical action principle as applied
to bounded spacetime regions with ``sharp corners."Comment: Revtex, 41 Pages, 4 figures added. Final version has been revised and
improved quite a bit. To appear in Classical and Quantum Gravit
Radioactive silicon as a marker in thin-film silicide formation
A new technique using radioactive 31Si (half-life =2.62 h), formed in a nuclear reactor, as a marker for studying silicide formation is described. A few hundred angstroms of radioactive silicon is first deposited onto the silicon substrate, followed immediately by the deposition of a few thousand angstroms of the metal. When the sample is heated, a silicide is first formed with the radioactive silicon. Upon further silicide formation, this band of radioactive silicide can move to the surface of the sample if silicide formation takes place by diffusion of the metal or by silicon substitutional and/or vacancy diffusion. However, if the band of radioactive silicide stays at the silicon substrate interface it can be concluded that silicon diffuses by interstitial and/or grain-boundary diffusion. This technique was tested by studying the formation of Ni2Si on silicon at 330 °C. From a combination of ion-beam sputtering, radioactivity measurement, and Rutherford backscattering it is found that the band of radioactive silicide moves to the surface of the sample during silicide formation. From these results, implanted noble-gas marker studies and the rate dependence of Ni2Si growth on grain size, it is concluded that nickel is the dominant diffusing species during Ni2Si formation, and that it moves by grain-boundary diffusion
Dissociation mechanism for solid-phase epitaxy of silicon in the Si <100>/Pd2Si/Si (amorphous) system
Solid-phase epitaxial growth (SPEG) of silicon was investigated by a tracer technique using radioactive 31Si formed by neutron activation in a nuclear reactor. After depositing Pd and Si onto activated single-crystal silicon substrates, Pd2Si was formed with about equal amounts of radioactive and nonradioactive Si during heating at 400 °C for 5 min. After an 1-sec annealing stage (450-->500 °C in 1 h) this silicide layer, which moves to the top of the sample during SPEG, is etched off with aqua regia. From the absence of radioactive 31Si in the etch, it is concluded that SPEG takes place by a dissociation mechanism rather than by diffusion
Nature Versus Nurture: Luminous Blue Variable Nebulae in and near Massive Stellar Clusters at the Galactic Center
Three Luminous Blue Variables (LBVs) are located in and near the Quintuplet
Cluster at the Galactic Center: the Pistol star, G0.120-0.048, and qF362. We
present imaging at 19, 25, 31, and 37 {\mu}m of the region containing these
three LBVs, obtained with SOFIA using FORCAST. We argue that the Pistol and
G0.120-0.048 are identical ``twins" that exhibit contrasting nebulae due to the
external influence of their different environments. Our images reveal the
asymmetric, compressed shell of hot dust surrounding the Pistol Star and
provide the first detection of the thermal emission from the symmetric, hot
dust envelope surrounding G0.120-0.048. Dust and gas composing the Pistol
nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars.
The northern region of the Pistol nebula is decelerated due to the interaction
with the high-velocity (2000 km/s) winds from adjacent Wolf-Rayet Carbon (WC)
stars. With the DustEM code we determine that the Pistol nebula is composed of
a distribution of very small, transiently-heated grains (10-~35 {\AA}) and that
it exhibits a gradient of decreasing grain size from the south to the north due
to differential sputtering by the winds from the WC stars. Dust in the
G0.120-0.048 nebula is primarily heated by the central star; however, the
nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol
nebula, the G0.120-0.048 nebula is freely expanding into the surrounding
medium. Given independent dust and gas mass estimates we find that the Pistol
and G0.120-0.048 nebulae exhibit similar gas-to-dust mass ratios of ~310 and
~290, respectively. Both nebulae share identical size scales (~ 0.7 pc) which
suggests that they have similar dynamical timescales of ~10^5 yrs, assuming a
shell expansion velocity of v_exp 60 km/s.Comment: 18 pages, 7 figures, accepted to Ap
Old supernova dust factory revealed at the Galactic center
Dust formation in supernova ejecta is currently the leading candidate to
explain the large quantities of dust observed in the distant, early Universe.
However, it is unclear whether the ejecta-formed dust can survive the hot
interior of the supernova remnant (SNR). We present infrared observations of
~0.02 of warm (~100 K) dust seen near the center of the ~10,000
yr-old Sgr A East SNR at the Galactic center. Our findings signify the
detection of dust within an older SNR that is expanding into a relatively dense
surrounding medium ( ~ 100 ) and has survived the
passage of the reverse shock. The results suggest that supernovae may indeed be
the dominant dust production mechanism in the dense environment of early
Universe galaxies.Comment: 25 pages, 5 figures. Includes supplementary materials. Published
Online March 19 2015 on Science Expres
Structural evaluation of concrete expanded polystyrene sandwich panels for slab applications
Sandwich panels are being extensively and increasingly used in building construction because they are light in weight, energy efficient, aesthetically attractive and can be easily handled and erected. This paper presents a structural evaluation of Concrete-Expanded Polystyrene (CEPS) sandwich panels for slab applications using finite element modeling approach. CEPS panels are made of expanded polystyrene foam sandwiched between concrete skins. The use of foam in the middle of sandwich panel reduces the weight of the structure and also acts as insulation against thermal, acoustics and vibration. Applying reinforced concrete skin to both sides of panel takes the advantages of the sandwich concept where the reinforced concrete skins take compressive and tensile loads resulting in higher stiffness and strength and the core transfers shear loads between the faces. This research uses structural software Strand7, which is based on finite element method, to predict the load deformation behaviour of the CEPS sandwich slab panels. Non linear static analysis was used in the numerical investigations. Predicted results were compared with the existing experimental results to validate the numerical approach used
Epitaxial growth of deposited amorphous layer by laser annealing
We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing
Effect of changing window type and ventilation strategy on indoor thermal environment of existing garment factories in Bangladesh
This paper presents two workable solutions that can significantly improve the indoor thermal environment within workspaces in existing ready-made garment (RMG) factories in the tropical climatic context of Bangladesh. The research involved field studies in three multi-storey factory buildings, interviews with workers and owners and simulation studies. Field data indicated that the existing window configurations and limiting the ventilation strategy to occupied hours caused overheating of the indoor environment. Among a list of proposals, the building owners saw value in implementing two solutions (i.e. altering existing window type to one with a higher effective opening area and adopting a night-time ventilation strategy) in their existing buildings as well as proposed new buildings. To quantify the benefits, a validated simulation study was conducted. The findings confirm that these two interventions can provide reductions of up to 23% in overheated working hours and in so doing, improve workers’ thermal comfort and well-being
- …