830 research outputs found

    Adaptive multi-scale retinex algorithm for contrast enhancement of real world scenes

    Get PDF
    Contrast enhancement is a classic image restoration technique that traditionally has been performed using forms of histogram equalization. While effective these techniques often introduce unrealistic tonal rendition in real-world scenes. This paper explores the use of Retinex theory to perform contrast enhancement of real-world scenes. We propose an improvement to the Multi-Scale Retinex algorithm which enhances its ability to perform dynamic range compression while not introducing halo artifacts and greying. The algorithm is well suited to be implemented on the GPU and by doing so real-time processing speeds are achieved

    Influence of age and sex on pacing during sprint, Olympic, half-Ironman and Ironman triathlons. Part B

    Get PDF
    The aim of this study was to investigate the influence of biological sex and age on the pacing strategies adopted by non-drafting top triathletes during the cycle and run disciplines of a Sprint, Olympic, half-Ironman and Ironman triathlon. Split times of the top 20% non-elite males (n=468) and females (n=146) were determined using official race transponders and a video capture system for pre-determined sections of the cycle and run disciplines of four triathlon distances. Indices of pacing were calculated to compare between sexes and age-groups. Results of this study indicated that different pacing strategies were adopted between athletes of different age and sex over the various triathlon disciplines and distances. Females were more aggressive during the initial stages of the cycling discipline across all distances (sprint - 2.1% p=0.024; Olympic - 1.6%, p=0.011; half-Ironman- 1.5%, p\u3c0.001; Ironman - 1.7%, p\u3c0.001 higher relative to mean) compare with males. Younger athletes (20-29 y) tend to begin the run faster (2.0 to 3.0% faster than other age-groups, p\u3c0.029) during the sprint, Olympic and half-Ironman triathlons. These results indicate that different pacing strategies are adopted by non-drafting top athletes of different age and sex. Optimal pacing strategies may differ between sex and ages; therefore individuals may need to trial different strategies to develop their own optimal pacing profile for triathlon events of varying distances

    Changing Perception of Avian Influenza Risk, Hong Kong, 2006–2010

    Full text link

    Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor

    Get PDF
    Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells. Although isorhamnetin by itself did not show significant inductive effect on neurite outgrowth of cultured PC12 cells, the application of isorhamnetin potentiated the nerve growth factor- (NGF-)induced neurite outgrowth. In parallel, the expression of neurofilaments was markedly increased in the cotreatment of NGF and isorhamnetin in the cultures. The identification of these neurite-promoting flavonoids could be very useful in finding potential drugs, or food supplements, for treating various neurodegenerative diseases, including Alzheimer's disease and depression

    Localization and prediction of malignant potential in recurrent pheochromocytoma/paraganglioma (PCC/PGL) using 18F-FDG PET/CT

    Get PDF
    Background: To our knowledge, data are lacking on the role of 18F-FDG PET/CT in the localization and prediction of neuroendocrine tumors, in particular the pheochromocytoma/paraganglioma (PCC/PGL) group. Purpose: To evaluate the role of 18F-FDG PET/CT in localizing and predicting the malignant potential of PCC/PGL. Material and Methods: Twenty-three consecutive patients with a history of PCC/PGL, presenting with symptoms related to catecholamine excess, underwent 18F-FDG PET/CT. Final confirmation of the diagnosis was made using the composite references. PET/CT findings were analyzed on a per-lesion basis and a per-patient basis. Tumor SUVmax was analyzed to predict the dichotomization of patient endpoints for the local disease and metastatic groups. Results: We investigated 23 patients (10 men, 13 women) with a mean age of 46.43±3.70 years. Serum catecholamine levels were elevated in 82.60% of these patients. There were 136 sites (mean SUVmax: 16.39±3.47) of validated disease recurrence. The overall sensitivities for diagnostic CT, FDG PET, and FDG PET/CT were 86.02%, 87.50%, and 98.59%, respectively. Based on the composite references, 39.10% of patients had local disease. There were significant differences in the SUVmax distribution between the local disease and metastatic groups; a significant correlation was noted when a SUVmax cut-off was set at 9.2 (P<0.05). Conclusion: In recurrent PCC/PGL, diagnostic 18F-FDG PET/CT is a superior tool in the localization of recurrent tumors. Tumor SUVmax is a potentially useful predictor of malignant tumor potential

    Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage

    Get PDF
    © 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes

    Calcium Homeostasis in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Get PDF
    Rationale: Cardiomyocytes generated from human induced pluripotent stem cells (hiPSCs) are suggested as the most promising candidate to replenish cardiomyocyte loss in regenerative medicine. Little is known about their calcium homeostasis, the key process underlying excitation-contraction coupling. Objective: We investigated the calcium handling properties of hiPSC-derived cardiomyocytes and compared with those from human embryonic stem cells (hESCs). Methods and Results: We differentiated cardiomyocytes from hiPSCs (IMR90 and KS1) and hESCs (H7 and HES3) with established protocols. Beating outgrowths from embryoid bodies were typically observed 2 weeks after induction. Cells in these outgrowths were stained positively for tropomyosin and sarcomeric alpha-actinin. Reverse-transcription polymerase chain reaction studies demonstrated the expressions of cardiac-specific markers in both hiPSC- and hESC-derived cardiomyocytes. Calcium handling properties of 20-day-old hiPSC- and hESC-derived cardiomyocytes were investigated using fluorescence confocal microscopy. Compared with hESC-derived cardiomyocytes, spontaneous calcium transients from both lines of hiPSC-derived cardiomyocytes were of significantly smaller amplitude and with slower maximal upstroke velocity. Better caffeine-induced calcium handling kinetics in hESC-CMs indicates a higher sacroplasmic recticulum calcium store. Furthermore, in contrast with hESC-derived cardiomyocytes, ryanodine did not reduce the amplitudes, maximal upstroke and decay velocity of calcium transients of hiPSC-derived cardiomyocytes. In addition, spatial inhomogeneity in temporal properties of calcium transients across the width of cardiomyocytes was more pronounced in hiPSC-derived cardiomyocytes than their hESC counterpart as revealed line-scan calcium imaging. Expressions of the key calcium-handling proteins including ryanodine recptor-2 (RyR2), sacroplasmic recticulum calcium-ATPase (SERCA), junction (Jun) and triadin (TRDN), were significantly lower in hiPSC than in hESCs. Conclusions: The results indicate the calcium handling properties of hiPSC-derived cardiomyocytes are relatively immature to hESC counterparts. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
    corecore