1,988 research outputs found

    Sparse spectral-tau method for the three-dimensional helically reduced wave equation on two-center domains

    Get PDF
    We describe a multidomain spectral-tau method for solving the three-dimensional helically reduced wave equation on the type of two-center domain that arises when modeling compact binary objects in astrophysical applications. A global two-center domain may arise as the union of Cartesian blocks, cylindrical shells, and inner and outer spherical shells. For each such subdomain, our key objective is to realize certain (differential and multiplication) physical-space operators as matrices acting on the corresponding set of modal coefficients. We then achieve sparse realizations through the integration “preconditioning” of Coutsias, Hagstrom, Hesthaven, and Torres. Since ours is the first three-dimensional multidomain implementation of the technique, we focus on the issue of convergence for the global solver, here the alternating Schwarz method accelerated by GMRES. Our methods may prove relevant for numerical solution of other mixed-type or elliptic problems, and in particular for the generation of initial data in general relativity

    Measuring Voter Decision Strategies in Political Behavior and Public Opinion Research

    Get PDF
    Although political science has advanced the study of voter decision-making, the discipline still understands very little about how citizens go about reaching those decisions. In this article, we introduce a five-factor self-report scale of political decision-making (PolDec-5) administered to six different samples with more than 6,500 respondents over the past four years. Analyses illustrate that our five subscales—Rational Choice, Confirmatory, Fast and Frugal, Heuristic-Based, and Going with Your Gut—have high internal consistency, relatively high discriminant validity (as they are largely distinct from existing measures of decision-making style), and significantly high predictive validity, as established by process tracing studies where actual decision strategies of voters can be observed directly. Finally, we discuss how these new measures can help predict important political outcomes

    AMPing Racial Attitudes: Comparing the Power of Explicit and Implicit Racism Measures in 2008

    Get PDF
    In 2008, ANES included for the first time—along with standard explicit measures of old-fashioned and symbolic racism—the Affect Misattribution Procedure (AMP), a relatively new implicit measure of racial attitudes. This article examines the extent to which four different measures of racial prejudice (three explicit and one implicit) predict public opinion during and after the 2008 election, including Americans' views towards several racial policy issues, their evaluations of, and feelings toward, Barack Obama, and their attitudes toward a Black president in general. Oversamples of African American and Latino respondents in the 2008 ANES enable us to broaden our tests of these measures beyond traditional White samples. We find that racial prejudice played an important role for all racial/ethnic groups but that the traditional explicit measures of racism are by far the stronger predictors for all of our dependent variables (compared to the new implicit measure) for both White and Black respondents. Surprisingly, the AMP adds clear explanatory power only to models in the Latino sample

    On the cross-section of Dark Matter using substructure infall into galaxy clusters

    Full text link
    We develop a statistical method to measure the interaction cross-section of Dark Matter, exploiting the continuous minor merger events in which small substructures fall into galaxy clusters. We find that by taking the ratio of the distances between the galaxies and Dark Matter, and galaxies and gas in accreting sub-halos, we form a quantity that can be statistically averaged over a large sample of systems whilst removing any inherent line-of-sight projections. In order to interpret this ratio as a cross-section of Dark Matter we derive an analytical description of sub-halo infall which encompasses; the force of the main cluster potential, the drag on a gas sub-halo, a model for Dark Matter self-interactions and the resulting sub-halo drag, the force on the gas and galaxies due to the Dark Matter sub-halo potential, and finally the buoyancy on the gas and Dark Matter. We create mock observations from cosmological simulations of structure formation and find that collisionless Dark Matter becomes physically separated from X-ray gas by up to 20h^-1 kpc. Adding realistic levels of noise, we are able to predict achievable constraints from observational data. Current archival data should be able to detect a difference in the dynamical behaviour of Dark Matter and standard model particles at 6 sigma, and measure the total interaction cross-section sigma/m with 68% confidence limits of +/- 1cm2g^-1. We note that this method is not restricted by the limited number of major merging events and is easily extended to large samples of clusters from future surveys which could potentially push statistical errors to 0.1cm^2g^-1.Comment: 14 pages, 11 figure

    Sparse spectral-tau method for the three-dimensional helically reduced wave equation on two-center domains

    Get PDF
    We describe a multidomain spectral-tau method for solving the three-dimensional helically reduced wave equation on the type of two-center domain that arises when modeling compact binary objects in astrophysical applications. A global two-center domain may arise as the union of Cartesian blocks, cylindrical shells, and inner and outer spherical shells. For each such subdomain, our key objective is to realize certain (differential and multiplication) physical-space operators as matrices acting on the corresponding set of modal coefficients. We achieve sparse banded realizations through the integration "preconditioning" of Coutsias, Hagstrom, Hesthaven, and Torres. Since ours is the first three-dimensional multidomain implementation of the technique, we focus on the issue of convergence for the global solver, here the alternating Schwarz method accelerated by GMRES. Our methods may prove relevant for numerical solution of other mixed-type or elliptic problems, and in particular for the generation of initial data in general relativity.Comment: 37 pages, 3 figures, 12 table

    Kinetics, dynamics, and bioavailability of bumetanide in healthy subjects and patients with chronic renal failure

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109801/1/cptclpt1986112.pd

    Multidomain Spectral Method for the Helically Reduced Wave Equation

    Get PDF
    We consider the 2+1 and 3+1 scalar wave equations reduced via a helical Killing field, respectively referred to as the 2-dimensional and 3-dimensional helically reduced wave equation (HRWE). The HRWE serves as the fundamental model for the mixed-type PDE arising in the periodic standing wave (PSW) approximation to binary inspiral. We present a method for solving the equation based on domain decomposition and spectral approximation. Beyond describing such a numerical method for solving strictly linear HRWE, we also present results for a nonlinear scalar model of binary inspiral. The PSW approximation has already been theoretically and numerically studied in the context of the post-Minkowskian gravitational field, with numerical simulations carried out via the "eigenspectral method." Despite its name, the eigenspectral technique does feature a finite-difference component, and is lower-order accurate. We intend to apply the numerical method described here to the theoretically well-developed post-Minkowski PSW formalism with the twin goals of spectral accuracy and the coordinate flexibility afforded by global spectral interpolation.Comment: 57 pages, 11 figures, uses elsart.cls. Final version includes revisions based on referee reports and has two extra figure

    Angular momentum and an invariant quasilocal energy in general relativity

    Full text link
    Owing to its transformation property under local boosts, the Brown-York quasilocal energy surface density is the analogue of E in the special relativity formula: E^2-p^2=m^2. In this paper I will motivate the general relativistic version of this formula, and thereby arrive at a geometrically natural definition of an `invariant quasilocal energy', or IQE. In analogy with the invariant mass m, the IQE is invariant under local boosts of the set of observers on a given two-surface S in spacetime. A reference energy subtraction procedure is required, but in contrast to the Brown-York procedure, S is isometrically embedded into a four-dimensional reference spacetime. This virtually eliminates the embeddability problem inherent in the use of a three-dimensional reference space, but introduces a new one: such embeddings are not unique, leading to an ambiguity in the reference IQE. However, in this codimension-two setting there are two curvatures associated with S: the curvatures of its tangent and normal bundles. Taking advantage of this fact, I will suggest a possible way to resolve the embedding ambiguity, which at the same time will be seen to incorporate angular momentum into the energy at the quasilocal level. I will analyze the IQE in the following cases: both the spatial and future null infinity limits of a large sphere in asymptotically flat spacetimes; a small sphere shrinking toward a point along either spatial or null directions; and finally, in asymptotically anti-de Sitter spacetimes. The last case reveals a striking similarity between the reference IQE and a certain counterterm energy recently proposed in the context of the conjectured AdS/CFT correspondence.Comment: 54 pages LaTeX, no figures, includes brief summary of results, submitted to Physical Review
    corecore