10 research outputs found

    Complicated intra-abdominal infections worldwide : the definitive data of the CIAOW Study

    Get PDF
    Peer reviewe

    Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW Study

    Get PDF

    Polarization screening-induced magnetic phase gradients at complex oxide interfaces.

    No full text
    Thin-film oxide heterostructures show great potential for use in spintronic memories, where electronic charge and spin are coupled to transport information. Here we use a La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) model system to explore how local variations in electronic and magnetic phases mediate this coupling. We present direct, local measurements of valence, ferroelectric polarization and magnetization, from which we map the phases at the LSMO/PZT interface. We combine these experimental results with electronic structure calculations to elucidate the microscopic interactions governing the interfacial response of this system. We observe a magnetic asymmetry at the LSMO/PZT interface that depends on the local PZT polarization and gives rise to gradients in local magnetic moments; this is associated with a metal-insulator transition at the interface, which results in significantly different charge-transfer screening lengths. This study establishes a framework to understand the fundamental asymmetries of magnetoelectric coupling in oxide heterostructures

    HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore