359 research outputs found

    Return-map-based approaches for noncoherent detection in chaotic digital communications

    Full text link

    Modeling of Nanocomposite Structures to Evaluate the Effect of Nanoplatelet Interphase Region on Electric Field Intensity

    Get PDF
    The effects of the nanoplatelet interphase region on the electric field intensity within a nanocomposite structures are presented in this paper. The modeling of the nanoplatelet and its interphases was performed by using the Finite Element Method Magnetics (FEMM) 4.2 software. Two possible structures of the nanoplatelet were simulated – with and without interphases. In addition, two different models of interphase structures surrounding the nanoplatelet were analyzed – one with rectangular-shaped interphase and the other with circularly-shaped interphase. Both sets of the model interphase were assumed to have different thicknesses and radii. The results showed that the presence of the nanoplatelet interphase affected the electric field intensity of the nanocomposite

    Regulatory networks and connected components of the neutral space

    Full text link
    The functioning of a living cell is largely determined by the structure of its regulatory network, comprising non-linear interactions between regulatory genes. An important factor for the stability and evolvability of such regulatory systems is neutrality - typically a large number of alternative network structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional networks is fragmented into 4.7 * 10^8 components. One of the smaller ones contains the wildtype network. On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.Comment: 6 pages, 5 figure

    Low threshold linear cavity mode-locked fiber laser using microfiber-based carbon nanotube saturable absorber

    Get PDF
    In this work, we demonstrate a linear cavity mode-locked erbium-doped fiber laser in C-band wavelength region. The passive mode-locking is achieved using a microfiber-based carbon nanotube saturable absorber. The carbon nanotube saturable absorber has low saturation fluence of 0.98 µJ/cm2. Together with the linear cavity architecture, the fiber laser starts to produce soliton pulses at low pump power of 22.6 mW. The proposed fiber laser generates fundamental soliton pulses with a center wavelength, pulse width, and repetition rate of 1557.1 nm, 820 fs, and 5.41 MHz, respectively. This mode-locked laser scheme presents a viable option in the development of low threshold ultrashort pulse system for deployment as a seed laser

    Mode oscillation and harmonic distortions associated with sinusoidal modulation of semiconductor lasers

    Get PDF
    This paper investigates mode dynamics, operation characteristics and signal distortions associated with sinusoidal modulation of semiconductor lasers. The study is based on intensive integrations of the multimode rate equation model of semiconductor lasers over wide ranges of the modulation frequency and depth. The rate equations take into account both spectral symmetric and asymmetric suppressions of modal gain. The higher harmonic distortions as well as the half harmonic distortion associated with the period doubling effect are investigated. The study is applied to both cases of single-mode and multimode oscillations of the non-modulated laser. The obtained results showed that the modulated signal has six distinct waveforms depending on the modulation conditions; three types have continuous periodic waveforms and the others have periodic pulsing waveforms. The modulated laser is found to oscillate in a single mode under weak modulation where the modulated signal is continuous, whereas the pulsing signals are associated with multimode oscillation. The higher harmonic distortions of single-mode laser are lower than those of two-mode lasers, and become serious at modulation frequencies around the relaxation oscillation frequency. These distortions are highest when the laser output is pulsating and the pulses are superposed by relaxation oscillations. © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012

    Effects of School Closures, 2008 Winter Influenza Season, Hong Kong

    Get PDF
    In winter 2008, kindergartens and primary schools in Hong Kong were closed for 2 weeks after media coverage indicated that 3 children had died, apparently from influenza. We examined prospective influenza surveillance data before, during, and after the closure. We did not find a substantial effect on community transmission
    corecore