14,003 research outputs found

    Phase Transitions in Lyotropic Nematic Gels

    Full text link
    In this paper, we discuss the equilibrium phases and collapse transitions of a lyotropic nematic gel immersed in an isotropic solvent. A nematic gel consists of a cross-linked polymer network with rod-like molecules embedded in it. Upon decreasing the quality of the solvent, we find that a lyotropic nematic gel undergoes a discontinuous volume change accompanied by an isotropic-nematic transition. We also present phase diagrams that these systems may exhibit. In particular, we show that coexistence of two isotropic phases, of two nematic phases, or of an isotropic and a nematic phase can occur.Comment: 13 pages Revtex, 10 figures, submitted to EPJ

    Non-equilibrium fluctuations and mechanochemical couplings of a molecular motor

    Full text link
    We investigate theoretically the violations of Einstein and Onsager relations, and the efficiency for a single processive motor operating far from equilibrium using an extension of the two-state model introduced by Kafri {\em et al.} [Biophys. J. {\bf 86}, 3373 (2004)]. With the aid of the Fluctuation Theorem, we analyze the general features of these violations and this efficiency and link them to mechanochemical couplings of motors. In particular, an analysis of the experimental data of kinesin using our framework leads to interesting predictions that may serve as a guide for future experiments.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    Room temperature electron spin coherence in telecom-wavelength quaternary quantum wells

    Full text link
    Time-resolved Kerr rotation spectroscopy is used to monitor the room temperature electron spin dynamics of optical telecommunication wavelength AlInGaAs multiple quantum wells lattice-matched to InP. We found that electron spin coherence times and effective g-factors vary as a function of aluminum concentration. The measured electron spin coherence times of these multiple quantum wells, with wavelengths ranging from 1.26 microns to 1.53 microns, reach approximately 100 ps at room temperature, and the measured electron effective g-factors are in the range from -2.3 to -1.1.Comment: 4 pages, 4 figure

    New variables, the gravitational action, and boosted quasilocal stress-energy-momentum

    Full text link
    This paper presents a complete set of quasilocal densities which describe the stress-energy-momentum content of the gravitational field and which are built with Ashtekar variables. The densities are defined on a two-surface BB which bounds a generic spacelike hypersurface ÎŁ\Sigma of spacetime. The method used to derive the set of quasilocal densities is a Hamilton-Jacobi analysis of a suitable covariant action principle for the Ashtekar variables. As such, the theory presented here is an Ashtekar-variable reformulation of the metric theory of quasilocal stress-energy-momentum originally due to Brown and York. This work also investigates how the quasilocal densities behave under generalized boosts, i. e. switches of the ÎŁ\Sigma slice spanning BB. It is shown that under such boosts the densities behave in a manner which is similar to the simple boost law for energy-momentum four-vectors in special relativity. The developed formalism is used to obtain a collection of two-surface or boost invariants. With these invariants, one may ``build" several different mass definitions in general relativity, such as the Hawking expression. Also discussed in detail in this paper is the canonical action principle as applied to bounded spacetime regions with ``sharp corners."Comment: Revtex, 41 Pages, 4 figures added. Final version has been revised and improved quite a bit. To appear in Classical and Quantum Gravit

    Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene

    Get PDF
    Atomically resolved imaging and spectroscopic characteristics of graphene grown by chemical vapor deposition (CVD) on copper foils are investigated and compared with those of mechanical exfoliated graphene on SiO_2. For exfoliated graphene, the local spectral deviations from ideal behavior may be attributed to strain induced by the SiO_2 substrate. For CVD grown graphene, the lattice structure appears strongly distorted by the underlying copper, with regions in direct contact with copper showing nearly square lattices whereas suspended regions from thermal relaxation exhibiting nearly honeycomb or hexagonal lattice structures. The electronic density of states (DOS) correlates closely with the atomic arrangements of carbon, showing excess zero-bias tunneling conductance and nearly energy-independent DOS for strongly distorted graphene, in contrast to the linearly dispersive DOS for suspended graphene. These results suggest that graphene can interact strongly with both metallic and dielectric materials in close proximity, leading to non-negligible modifications to the electronic properties

    Generating Spin Currents in Semiconductors with the Spin Hall Effect

    Full text link
    We investigate electrically-induced spin currents generated by the spin Hall effect in GaAs structures that distinguish edge effects from spin transport. Using Kerr rotation microscopy to image the spin polarization, we demonstrate that the observed spin accumulation is due to a transverse bulk electron spin current, which can drive spin polarization nearly 40 microns into a region in which there is minimal electric field. Using a model that incorporates the effects of spin drift, we determine the transverse spin drift velocity from the magnetic field dependence of the spin polarization.Comment: 4 pages, 4 figure

    Entanglement and the nonlinear elastic behavior of forests of coiled carbon nanotubes

    Get PDF
    Helical or coiled nanostructures have been object of intense experimental and theoretical studies due to their special electronic and mechanical properties. Recently, it was experimentally reported that the dynamical response of foamlike forest of coiled carbon nanotubes under mechanical impact exhibits a nonlinear, non-Hertzian behavior, with no trace of plastic deformation. The physical origin of this unusual behavior is not yet fully understood. In this work, based on analytical models, we show that the entanglement among neighboring coils in the superior part of the forest surface must be taken into account for a full description of the strongly nonlinear behavior of the impact response of a drop-ball onto a forest of coiled carbon nanotubes.Comment: 4 pages, 3 figure

    Effects of counterion fluctuations in a polyelectrolyte brush

    Full text link
    We investigate the effect of counterion fluctuations in a single polyelectrolyte brush in the absence of added salt by systematically expanding the counterion free energy about Poisson-Boltzmann mean field theory. We find that for strongly charged brushes, there is a collapse regime in which the brush height decreases with increasing charge on the polyelectrolyte chains. The transition to this collapsed regime is similar to the liquid-gas transition, which has a first-order line terminating at a critical point. We find that for monovalent counterions the transition is discontinuous in theta solvent, while for multivalent counterions the transition is generally continuous. For collapsed brushes, the brush height is not independent of grafting density as it is for osmotic brushes, but scales linear with it.Comment: 9 pages, 9 figure

    Hamiltonians for a general dilaton gravity theory on a spacetime with a non-orthogonal, timelike or spacelike outer boundary

    Get PDF
    A generalization of two recently proposed general relativity Hamiltonians, to the case of a general (d+1)-dimensional dilaton gravity theory in a manifold with a timelike or spacelike outer boundary, is presented.Comment: 17 pages, 3 figures. Typos correcte
    • …
    corecore