848 research outputs found
Overcoming barriers to effective early parenting interventions for attention-deficit hyperactivity disorder (ADHD): parent and practitioner views
BackgroundThe importance of early intervention approaches for the treatment of attention-deficit hyperactivity disorder (ADHD) has been increasingly acknowledged. Parenting programmes (PPs) are recommended for use with preschool children with ADHD. However, low take-up' and high drop-out' rates compromise the effectiveness of such programmes within the community.
MethodsThis qualitative study examined the views of 25 parents and 18 practitioners regarding currently available PPs for preschool children with ADHD-type problems in the UK. Semi-structured interviews were undertaken to identify both barriers and facilitators associated with programme access, programme effectiveness, and continued engagement.
Results and conclusionsMany of the themes mirrored previous accounts relating to generic PPs for disruptive behaviour problems. There were also a number of ADHD-specific themes. Enhancing parental motivation to change parenting practice and providing an intervention that addresses the parents' own needs (e.g. in relation to self-confidence, depression or parental ADHD), in addition to those of the child, were considered of particular importance. Comparisons between the views of parents and practitioners highlighted a need to increase awareness of parental psychological barriers among practitioners and for better programme advertising generally. Clinical implications and specific recommendations drawn from these findings are discussed and presented
Spherical single-roll dynamos at large magnetic Reynolds numbers
This paper concerns kinematic helical dynamos in a spherical fluid body
surrounded by an insulator. In particular, we examine their behaviour in the
regime of large magnetic Reynolds number \Rm, for which dynamo action is
usually concentrated upon a simple resonant stream-surface. The dynamo
eigensolutions are computed numerically for two representative single-roll
flows using a compact spherical harmonic decomposition and fourth-order
finite-differences in radius. These solutions are then compared with the growth
rates and eigenfunctions of the Gilbert and Ponty (2000) large \Rm asymptotic
theory. We find good agreement between the growth rates when \Rm>10^4, and
between the eigenfunctions when \Rm>10^5.Comment: 36 pages, 8 figures. V2: incorrect labels in Fig3 corrected. The
article appears in Physics of Fluids, 22, 066601, and may be found at
http://pof.aip.org/phfle6/v22/i6/p066601_s1 . (Copyright 2010 American
Institute of Physics. This article may be downloaded for personal use only.
Any other use requires prior permission of the author and the American
Institute of Physics
Is the Cepheus E Outflow driven by a Class 0 Protostar?
New early release observations of the Cepheus E outflow and its embedded
source, obtained with the Spitzer Space Telescope, are presented. We show the
driving source is detected in all 4 IRAC bands, which suggests that traditional
Class 0 classification, although essentially correct, needs to accommodate the
new high sensitivity infrared arrays and their ability to detected deeply
embedded sources. The IRAC, MIPS 24 and 70 microns new photometric points are
consistent with a spectral energy distribution dominated by a cold, dense
envelope surrounding the protostar. The Cep E outflow, unlike its more famous
cousin the HH 46/47 outflow, displays a very similar morphology in the near and
mid-infrared wavelengths, and is detected at 24 microns. The interface between
the dense molecular gas (where Cep E lies) and less dense interstellar medium,
is well traced by the emission at 8 and 24 microns, and is one of the most
exotic features of the new IRAC and MIPS images. IRS observations of the North
lobe of the flow confirm that most of the emission is due to the excitation of
pure H2 rotational transitions arising from a relatively cold (Tex~700 K) and
dense (N{H}~9.6E20 cm-2 molecular gas.Comment: 14 pages (pre-print format), including 6 figures. Published in ApJ
Special Spitzer Issue (2004
Interactions of the Gasotransmitters Contribute to Microvascular Tone (Dys)regulation in the Preterm Neonate
Background & Aims
Hydrogen sulphide (H2S), nitric oxide (NO), and carbon monoxide (CO) are involved in transitional microvascular tone dysregulation in the preterm infant; however there is conflicting evidence on the interaction of these gasotransmitters, and their overall contribution to the microcirculation in newborns is not known. The aim of this study was to measure the levels of all 3 gasotransmitters, characterise their interrelationships and elucidate their combined effects on microvascular blood flow.
Methods
90 preterm neonates were studied at 24h postnatal age. Microvascular studies were performed by laser Doppler. Arterial COHb levels (a measure of CO) were determined through co-oximetry. NO was measured as nitrate and nitrite in urine. H2S was measured as thiosulphate by liquid chromatography. Relationships between levels of the gasotransmitters and microvascular blood flow were assessed through partial correlation controlling for the influence of gestational age. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow and derive a theoretical model of their interactions.
Results
No relationship was observed between NO and CO (p = 0.18, r = 0.18). A positive relationship between NO and H2S (p = 0.008, r = 0.28) and an inverse relationship between CO and H2S (p = 0.01, r = -0.33) exists. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow. The model with the best fit is presented.
Conclusions
The relationships between NO and H2S, and CO and H2S may be of importance in the preterm newborn, particularly as NO levels in males are associated with higher H2S levels and higher microvascular blood flow and CO in females appears to convey protection against vascular dysregulation. Here we present a theoretical model of these interactions and their overall effects on microvascular flow in the preterm newborn, upon which future mechanistic studies may be based.The authors would like to acknowledge the parents of the neonates enrolled in the 2CANS
study for their participation, the staff of the Kaleidoscope Neonatal Intensive Care Unit at the
John Hunter Children’s Hospital, and Kimberly-Clark Australia for providing the diapers used
in this stud
The Herschel-SPIRE instrument and its in-flight performance
The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194–671 μm (447–1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4´× 8´, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6´. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5–2
Infrared Observations of the Helix Planetary Nebula
We have mapped the Helix (NGC 7293) planetary nebula (PN) with the IRAC instrument on the Spitzer Space Telescope. The Helix is one of the closest bright PNs and therefore provides an opportunity to resolve the small-scale structure in the nebula. The emission from this PN in the 5.8 and 8 μm IRAC bands is dominated by the pure rotational lines of molecular hydrogen, with a smaller contribution from forbidden line emission such as [Ar III] in the ionized region. The IRAC images resolve the "cometary knots," which have been previously studied in this PN. The "tails" of the knots and the radial rays extending into the outer regions of the PN are seen in emission in the IRAC bands. IRS spectra on the main ring and the emission in the IRAC bands are consistent with shock-excited H_2 models, with a small (~10%) component from photodissociation regions. In the northeast arc, the H_2 emission is located in a shell outside the Hα emission
Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies
Aims. To investigate the accretion and feedback processes in massive star formation, we analyze the shapes of emission lines from hot molecular cores, whose asymmetries trace infall and expansion motions.
Methods. The high-mass star forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in various lines of HCN and its isotopologues, complemented by APEX data. The observations are compared to spherically symmetric, centrally heated models with density power-law gradient and different velocity fields (infall or infall+expansion), using the radiative transfer code RATRAN.
Results. The HCN line profiles are asymmetric, with the emission peak shifting from blue to red with increasing J and decreasing line opacity (HCN to H^(13)CN). This is most evident in the HCN 12–11 line at 1062 GHz. These line shapes are reproduced by a model whose velocity field changes from infall in the outer part to expansion in the inner part.
Conclusions. The qualitative reproduction of the HCN lines suggests that infall dominates in the colder, outer regions, but expansion dominates in the warmer, inner regions. We are thus witnessing the onset of feedback in massive star formation, starting to reverse the infall and finally disrupting the whole molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI were critically important
Detection of a Far-Infrared Bow-Shock Nebula Around R Hya: the First MIRIAD Results
We present the first results of the MIRIAD (MIPS [Multiband Imaging
Photometer for Spitzer] Infra-Red Imaging of AGB [asymptotic giant branch]
Dustshells) project using the Spitzer Space Telescope. The primary aim of the
project is to probe the material distribution in the extended circumstellar
envelopes (CSE) of evolved stars and recover the fossil record of their mass
loss history. Hence, we must map the whole of the CSEs plus the surrounding sky
for background subtraction, while avoiding the central star that is brighter
than the detector saturation limit. With our unique mapping strategy, we have
achieved better than one MJy/sr sensitivity in three hours of integration and
successfully detected a faint (< 5 MJy/sr), extended (~400 arcsec) far-infrared
nebula around the AGB star R Hya. Based on the parabolic structure of the
nebula, the direction of the space motion of the star with respect to the
nebula shape, and the presence of extended H alpha emission co-spatial to the
nebula, we suggest that the detected far-IR nebula is due to a bow shock at the
interface of the interstellar medium and the AGB wind of this moving star. This
is the first detection of the stellar-wind bow-shock interaction for an AGB
star and exemplifies the potential of Spitzer as a tool to examine the detailed
structure of extended far-IR nebulae around bright central sources. \Comment: 10 pages, 2 figures, accepted for publication in ApJ
Herschel observations of EXtra-Ordinary Sources (HEXOS): The present and future of spectral surveys with Herschel/HIFI
We present initial results from the Herschel GT key program: Herschel observations of EXtra-Ordinary Sources (HEXOS) and outline the promise
and potential of spectral surveys with Herschel/HIFI. The HIFI instrument offers unprecedented sensitivity, as well as continuous spectral coverage
across the gaps imposed by the atmosphere, opening up a largely unexplored wavelength regime to high-resolution spectroscopy. We show the
spectrum of Orion KL between 480 and 560 GHz and from 1.06 to 1.115 THz. From these data, we confirm that HIFI separately measures the dust
continuum and spectrally resolves emission lines in Orion KL. Based on this capability we demonstrate that the line contribution to the broad-band
continuum in this molecule-rich source is ~20−40% below 1 THz and declines to a few percent at higher frequencies. We also tentatively identify
multiple transitions of HD^(18)O in the spectra. The first detection of this rare isotopologue in the interstellar medium suggests that HDO emission is
optically thick in the Orion hot core with HDO/H_2O ~ 0.02. We discuss the implications of this detection for the water D/H ratio in hot cores
- …
