17 research outputs found

    EUROlinkCAT protocol for a European population-based data linkage study investigating the survival, morbidity and education of children with congenital anomalies.

    Get PDF
    INTRODUCTION: Congenital anomalies (CAs) are a major cause of infant mortality, childhood morbidity and long-term disability. Over 130 000 children born in Europe every year will have a CA. This paper describes the EUROlinkCAT study, which is investigating the health and educational outcomes of children with CAs for the first 10 years of their lives. METHODS AND ANALYSIS: EUROCAT is a European network of population-based registries for the epidemiological surveillance of CAs. EUROlinkCAT is using the EUROCAT infrastructure to support 22 EUROCAT registries in 14 countries to link their data on births with CAs to mortality, hospital discharge, prescription and educational databases. Once linked, each registry transforms their case data into a common data model (CDM) format and they are then supplied with common STATA syntax scripts to analyse their data. The resulting aggregate tables and analysis results are submitted to a central results repository (CRR) and meta-analyses are performed to summarise the results across all registries. The CRR currently contains data on 155 594 children with a CA followed up to age 10 from a population of 6 million births from 1995 to 2014. ETHICS: The CA registries have the required ethics permissions for routine surveillance and transmission of anonymised data to the EUROCAT central database. Each registry is responsible for applying for and obtaining additional ethics and other permissions required for their participation in EUROlinkCAT. DISSEMINATION: The CDM and associated documentation, including linkage and standardisation procedures, will be available post-EUROlinkCAT thus facilitating future local, national and European-level analyses to improve healthcare. Recommendations to improve the accuracy of routinely collected data will be made.Findings will provide evidence to inform parents, health professionals, public health authorities and national treatment guidelines to optimise diagnosis, prevention and treatment for these children with a view to reducing health inequalities in Europe

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases

    Beckwith Wiedemann syndrome: A population-based study on prevalence, prenatal diagnosis, associated anomalies and survival in Europe.

    No full text
    Beckwith Wiedemann syndrome is a complex developmental disorder characterized by somatic overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycemia, and predisposition to embryonal tumors. We present epidemiological and clinical aspects of patients with Beckwith Wiedemann syndrome diagnosed prenatally or in the early years of life, using data from EUROCAT (European Surveillance of Congenital Anomalies) registries. The study population consisted of 371 cases identified between January 1990 and December 2015 in 34 registries from 16 European countries. There were 15 (4.0%) terminations of pregnancy after prenatal detection of severe anomaly/anomalies, 10 fetal deaths (2.7%), and 346 (93.3%) live-births. Twelve (3.6%) of the 330 live-births with available information on survival died in the first week of life, of those eleven (91.6%) were preterm. First-year survival rate was 90.9%. Prematurity was present in 40.6% of males and 33.9% of females. Macrosomia was found in 49.2% and 43.3% of preterm males and females, respectively. Of term newborns, 41.1% of males and 24% of females were macrosomic. Out of 353 cases with known time of diagnosis, 39.9% were suspected prenatally, 36.3% at birth, 7.6% were diagnosed in the first week of life, and 16.2% in the first year of life. The mean gestational age at prenatal diagnosis by obstetric ultrasound was 19.8 ± 6.2 (11-39) gestational weeks. The mean prenatal diagnosis of cases where parents opted for termination of pregnancy was 15.3 ± 2.4 (11-22) gestational weeks, and the mean gestational age at termination was 19.3 ± 4.1 (13-26) gestational weeks. The prenatal detection rate was 64.1% (141/220) with no significant change over time. There were 12.7% of familial cases. The study confirmed the association of assisted reproductive technologies with Beckwith Wiedemann syndrome, as 7.2% (13/181) of patients were conceived by one of the methods of assisted reproductive technologies, which was three times higher compared to the general population of the countries included in the study. Twin pregnancies of undetermined zygosity were recorded in 5.7% (21/365) cases, and were on average three to four times more common than in European countries that participated in the study. The estimated mean prevalence of classical Beckwith Wiedemann syndrome in Europe was 3.8 per 100,000 births or 1:26,000 births

    Increased STAG2 dosage defines a novel cohesinopathy with intellectual disability and behavioral problems

    No full text
    First published online: October 6, 2015Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.Raman Kumar ... Mark A. Corbett ...Alison Gardner, Joshua A.Woenig, Lachlan A. Jolly ... Chuan Tan ... Elizabeth M. Thompson, Eric Haan... Jozef Gecz et al

    Bilateral radial agenesis with absent thumbs, complex heart defect, short stature, and facial dysmorphism in a patient with pure distal microduplication of 5q35.2-5q35.3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A partial duplication of the distal long arm of chromosome 5 (5q35-- > qter) is known to be associated with a distinct phenotype referred to as Hunter-McAlpine syndrome. Clinical spectrum of this disorder mainly consists of mental retardation, microcephaly, short stature, skeletal anomalies, and craniofacial dysmorphism featuring flat facies, micrognathia, large, low-set dysplastic ears, hypertelorism, almond-shaped, down-slanted palpebral fissures, epicanthal folds, small nose, long philtrum, small mouth, and thin upper lip. Less frequent remarkable findings include craniosynostosis, heart defect, hypoplastic phalanges, preaxial polydactyly, hypospadias, cryptorchidism, and inguinal hernia. In most patients with a partial duplication of 5q the aberration occurred due to an inherited unbalanced translocation, therefore the phenotype was not reflective of pure trisomy 5q.</p> <p>Case presentation</p> <p>We report on a 9.5-year-old boy with some feature of Hunter-McAlpine syndrome including short stature, complex heart defect (dextrocardia, dextroversion, PFO), bilateral cryptorchidism, hypothyroidism, and craniofacial dysmorphism. Additionally, bilateral radial agenesis with complete absence of Ist digital rays, ulnar hypoplasia with bowing, choroidal and retinal coloboma, abnormal biliary vesicle were identified, which have never been noted in 5q trisomy patients. Karyotype analysis, sequencing and MLPA for <it>TBX5</it> and <it>SALL4</it> genes were unremarkable. Array comparative genomic hybridization detected a duplication on 5q35.2-5q35.3, resulting from a <it>de novo</it> chromosomal rearrangement. Our proband carried the smallest of all previously reported pure distal 5q trisomies encompassing terminal 5.4-5.6 Mb and presented with the most severe limb malformation attributed to the increased number of distal 5q copies.</p> <p>Conclusions</p> <p>We postulate that a terminal distal trisomy of 5q35.2-5q35.3, which maps 1.1 Mb telomeric to the <it>MSX2</it> gene is causative for both radial agenesis and complex heart defect in our proband. A potential candidate gene causative for limb malformation in our proband could be <it>FGFR4</it>, which maps relatively in the closest position to the chromosomal breakage site (about 1.3 Mb) from all known 5q duplications. Since the limb malformation as well as the underlying genetic defect are distinct from other 5q trisomy patient we propose that a position effect resulting in altered long-range regulation of the <it>FGFR4</it> (alternatively <it>MSX2</it>) may be responsible for the limb malformation in our proband.</p
    corecore