2,430 research outputs found

    A Generic Renormalization Method in Curved Spaces and at Finite Temperature

    Full text link
    Based only on simple principles of renormalization in coordinate space, we derive closed renormalized amplitudes and renormalization group constants at 1- and 2-loop orders for scalar field theories in general backgrounds. This is achieved through a generic renormalization procedure we develop exploiting the central idea behind differential renormalization, which needs as only inputs the propagator and the appropriate laplacian for the backgrounds in question. We work out this generic coordinate space renormalization in some detail, and subsequently back it up with specific calculations for scalar theories both on curved backgrounds, manifestly preserving diffeomorphism invariance, and at finite temperature.Comment: 15pp., REVTeX, UB-ECM-PF 94/1

    Violation of area-law scaling for the entanglement entropy in spin 1/2 chains

    Full text link
    Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure

    Simulation of many-qubit quantum computation with matrix product states

    Get PDF
    Matrix product states provide a natural entanglement basis to represent a quantum register and operate quantum gates on it. This scheme can be materialized to simulate a quantum adiabatic algorithm solving hard instances of a NP-Complete problem. Errors inherent to truncations of the exact action of interacting gates are controlled by the size of the matrices in the representation. The property of finding the right solution for an instance and the expected value of the energy are found to be remarkably robust against these errors. As a symbolic example, we simulate the algorithm solving a 100-qubit hard instance, that is, finding the correct product state out of ~ 10^30 possibilities. Accumulated statistics for up to 60 qubits point at a slow growth of the average minimum time to solve hard instances with highly-truncated simulations of adiabatic quantum evolution.Comment: 5 pages, 4 figures, final versio

    Entanglement renormalization in fermionic systems

    Get PDF
    We demonstrate, in the context of quadratic fermion lattice models in one and two spatial dimensions, the potential of entanglement renormalization (ER) to define a proper real-space renormalization group transformation. Our results show, for the first time, the validity of the multi-scale entanglement renormalization ansatz (MERA) to describe ground states in two dimensions, even at a quantum critical point. They also unveil a connection between the performance of ER and the logarithmic violations of the boundary law for entanglement in systems with a one-dimensional Fermi surface. ER is recast in the language of creation/annihilation operators and correlation matrices.Comment: 5 pages, 4 figures Second appendix adde

    Half the entanglement in critical systems is distillable from a single specimen

    Full text link
    We establish that the leading critical scaling of the single-copy entanglement is exactly one half of the entropy of entanglement of a block in critical infinite spin chains in a general setting, using methods of conformal field theory. Conformal symmetry imposes that the single-copy entanglement for critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6) (\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an infinite chain and c corresponds to the central charge. This proves that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to general isotropic quasi-free fermionic models. An analytic example of the XY model shows that away from criticality the above simple relation is only maintained near the quantum phase transition point.Comment: 4 pages RevTeX, 1 figure, final versio

    Boundary and impurity effects on entanglement of Heisenberg chains

    Full text link
    We study entanglement of a pair of qubits and the bipartite entanglement between the pair and the rest within open-ended Heisenberg XXXXXX and XY models. The open boundary condition leads to strong oscillations of entanglements with a two-site period, and the two kinds of entanglements are 180 degree out of phase with each other. The mean pairwise entanglement and ground-state energy per site in the XXXXXX model are found to be proportional to each other. We study the effects of a single bulk impurity on entanglement, and find that there exists threshold values of the relative coupling strength between the impurity and its nearest neighbours, after which the impurity becomes pairwise entangled with its nearest neighbours.Comment: 6 pages and 6 figure

    The Hidden Spatial Geometry of Non-Abelian Gauge Theories

    Full text link
    The Gauss law constraint in the Hamiltonian form of the SU(2)SU(2) gauge theory of gluons is satisfied by any functional of the gauge invariant tensor variable ϕij=BiaBja\phi^{ij} = B^{ia} B^{ja}. Arguments are given that the tensor Gij=(ϕ−1)ij det⁥BG_{ij} = (\phi^{-1})_{ij}\,\det B is a more appropriate variable. When the Hamiltonian is expressed in terms of ϕ\phi or GG, the quantity Γjki\Gamma^i_{jk} appears. The gauge field Bianchi and Ricci identities yield a set of partial differential equations for Γ\Gamma in terms of GG. One can show that Γ\Gamma is a metric-compatible connection for GG with torsion, and that the curvature tensor of Γ\Gamma is that of an Einstein space. A curious 3-dimensional spatial geometry thus underlies the gauge-invariant configuration space of the theory, although the Hamiltonian is not invariant under spatial coordinate transformations. Spatial derivative terms in the energy density are singular when det⁥G=det⁥B=0\det G=\det B=0. These singularities are the analogue of the centrifugal barrier of quantum mechanics, and physical wave-functionals are forced to vanish in a certain manner near det⁥B=0\det B=0. It is argued that such barriers are an inevitable result of the projection on the gauge-invariant subspace of the Hilbert space, and that the barriers are a conspicuous way in which non-abelian gauge theories differ from scalar field theories.Comment: 19 pages, TeX, CTP #223

    Concurrence in collective models

    Full text link
    We review the entanglement properties in collective models and their relationship with quantum phase transitions. Focusing on the concurrence which characterizes the two-spin entanglement, we show that for first-order transition, this quantity is singular but continuous at the transition point, contrary to the common belief. We also propose a conjecture for the concurrence of arbitrary symmetric states which connects it with a recently proposed criterion for bipartite entanglement.Comment: 8 pages, 2 figures, published versio

    Entanglement negativity in quantum field theory

    Get PDF
    We develop a systematic method to extract the negativity in the ground state of a 1+1 dimensional relativistic quantum field theory, using a path integral formalism to construct the partial transpose rho_A^{T_2} of the reduced density matrix of a subsystem A=A1 U A2, and introducing a replica approach to obtain its trace norm which gives the logarithmic negativity E=ln||\rho_A^{T_2}||. This is shown to reproduce standard results for a pure state. We then apply this method to conformal field theories, deriving the result E\sim(c/4) ln(L1 L2/(L1+L2)) for the case of two adjacent intervals of lengths L1, L2 in an infinite system, where c is the central charge. For two disjoint intervals it depends only on the harmonic ratio of the four end points and so is manifestly scale invariant. We check our findings against exact numerical results in the harmonic chain.Comment: 4 pages, 5 figure
    • 

    corecore