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Simulation of many-qubit quantum computation with matrix product states
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Matrix product states provide a natural entanglement basis to represent a quantum register and
operate quantum gates on it. This scheme can be materialized to simulate a quantum adiabatic
algorithm solving hard instances of a NP-Complete problem. Errors inherent to truncations of the
exact action of interacting gates are controlled by the size of the matrices in the representation.
The property of finding the right solution for an instance and the expected value of the energy
(cost function) are found to be remarkably robust against these errors. As a symbolic example,
we simulate the algorithm solving a 100-qubit hard instance, that is, finding the correct product
state out of ∼ 1030 possibilities. Accumulated statistics for up to 60 qubits seem to point at a
sub-exponential growth of the average minimum time to solve hard instances with highly-truncated
simulations of adiabatic quantum evolution.

PACS numbers: 03.67.-a, 03.65.Ud, 03.67.Hk

A detailed understanding of a many-spin quantum sys-
tem often requires its simulation on a classical computer.
Such a possibility is limited to a small number of spins
due to the exponential growth of the size of the Hilbert
space. This is at the heart of the motivation to build a
quantum computer [1]. Using standard present technol-
ogy, a faithful simulation of a general Hamiltonian can
be achieved for systems up to the order of 24 spins.

Recent developments in representing quantum states
and operating unitary evolution on them have refined the
above common lore. The idea has evolved from accumu-
lated knowledge on matrix product states (MPS, related
to the density matrix renormalization group technique)
[2] and new insights from quantum information. Let us
recall that a quantum state for an n-qubit system can be
represented by the matrix product construction

|ψ〉 =
∑

{i}

∑

{α}
A

(1)i1
1α1

A(2)i2
α1α2

. . . A
(n)in

αn−11|i1, i2, . . . , in〉 , (1)

where the indices i1, . . . , in for each qubit range from 0
to 1 (the qubits are placed in a chain) and α1, . . . , αn−1

are referred to as ancillae indices that range from 1 to a

parameter we shall call χ. Each matrix A
(a)ia
αa−1αa at site a

can be viewed as a projector from a pair of unphysical an-
cillae to the physical degree of freedom that we associate
to the computational basis. The success of MPS con-
sists in changing the representation of the quantum state
from the computational basis to a non-local one, closely
attached to entanglement. To make this comment con-
crete, let us note that the matrix representation of a state
can be recovered via a chain of Schmidt decompositions
that separate a local system at a time, as made explicit

by Vidal [3]. More specifically, A
(a)ia
αa−1αa = Γ

(a)ia
αa−1αaλ

(a)
αa ,

λ
(a)
αa being the Schmidt coefficients of the cut of the sys-

tem between the a and a+1 sides, and Γ(a) being tensors
for qubit a. The larger the entanglement is for different

partitions of the system, the larger is the needed ancil-
lae space, which corresponds to a higher rank χ. MPS
can handle simulations of various dynamics of spin chains
with up to hundreds of spins because their little amount
of entanglement can be represented with χ = O(poly(n))
[3, 4]. A number of new developments have popped up
from the basic MPS in the context of quantum informa-
tion. In ref. [3], an efficient implementation of Hamilto-
nian evolution was constructed for slightly entangled sys-
tems. An explicit renormalization group transformation
on quantum states was made explicit using MPS [5]. The
rigid linear structure of MPS is being now abandoned in
favor of the more general projected entangled-pair states
(PEPS) that have been successfully applied to higher di-
mensional systems [6].

The natural question arises of whether MPS can be
applied to simulate a quantum computer. The content of
this paper is aimed to show that this is indeed possible
and that we can handle large simulations with controlled
accuracy. As we shall describe, each time an entangling
gate is operated on two neighboring qubits, the range of
the connected ancillae index is doubled. This is the way
interacting gates entangle the system. To keep the simu-
lation under control, a (non-unique) truncation scheme is
needed that stops the exponential growth of ancillae di-
mensions. We expect this approximation scheme to fail
whenever the inherently needed χ is O(2n). Neverthe-
less, in some of these cases keeping χ = O(poly(n)) in
the simulation already gives reasonable approximations
to the exact calculation, as we shall see.

Our presentation will be made concrete by showing
an MPS simulation of quantum computation in the case
of adiabatic evolution for the NP-Complete Exact Cover
satisfiability problem [7, 8]. An instance of Exact Cover
is defined by a set of m 3-bit clauses with satisfying as-
signments 001, 010 or 100. The problem is defined as
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deciding whether a given instance accepts a global satis-
fying assignment of n bits. This satisfiability problem is
NP-Complete. Classically hard instances of Exact Cover
seem to appear at the so-called easy-hard-easy transition
around m ∼ .8n [9]. We have constructed such hard in-
stances, with the additional property of having a unique
satisfying assignment. The generation of hard instances
is in itself a difficult problem for which we have developed
specific algorithms, all of them based on the iterative ad-
dition of random clauses that strictly decrease the num-
ber of solutions of the instance until a single satisfying
assignment is reached.

The quantum algorithm for a given Exact Cover in-
stance follows the adiabatic evolution of the ground state
of a Hamiltonian (cost operator) defined by H(s) = (1−
s)H0 + sHP , where the adiabatic parameter is s = t/T
and t runs up to a total predetermined time T . We take
the initial Hamiltonian to beH0 =

∑n
i=1

di

2 (1−σx
i ) where

di stands for the number of clauses qubit i enters. The
non-local problem Hamiltonian corresponds to the sum of
clauses defined as HP =

∑

c(i,j,k)(zi +zj +zk −1)2 where

zi = (1 − σz
i )/2 has eigenvalues 0 and 1, and c(i, j, k)

stands for a clause involving qubits i, j and k. Exact
simulations of quantum algorithms by adiabatic evolu-
tion solving hard instances of satisfiability problems have
been carried so far up to 30 qubits [10]. The explosion
of entanglement between random cuts in the quantum
register was first analyzed in ref. [11]. The adiabatic
evolution drives the system near a quantum phase tran-
sition at s ∼ .69 following universal scaling laws. Entropy
for half-cuts of the register approximates on average the
scaling law S ∼ .1n, which almost saturates the maxi-
mum S = n/2. This implies that the quantum algorithm
cannot be simulated efficiently in a classical computer
[3]. Yet, the fact that entropy does not reach its al-
lowed maximum suggests that an adequate handling of
entanglement may provide a way to extend simulations
far from naive limitations.

Let us now turn to discuss the detailed way MPS can
handle the simulation of the adiabatic evolution of Ex-
act Cover. The simulation needs to follow a time evo-
lution controlled by the s-dependent Hamiltonian. This
continuous unitary time evolution can be discretized as
follows: UT,0 = UT,T−∆ . . . U2∆,∆U∆,0 where the incre-
ment ∆ ≡ T

M defines the discretization, M being a pos-
itive integer. Our simulations indicate that we can take
∆ = 0.125 while keeping sufficient accuracy (as com-
pared to smaller ∆) in all of them. We have explicitely
checked that simulations performed with ∆ < 0.125 lead
to equally-good discretizations of the continuous-time
adiabatic algorithm, in the sense that the obtained re-
sults do not practically differ from the ones calculated
for ∆ = 0.125. After l steps s = t

T = l∆
T = l

M , be-
ing l = 0, . . .M . At any point in the evolution Trotter’s
formula to second order is used to divide the unitary op-

eration U(l+1)∆,l∆ into elementary gates: U(l+1)∆,l∆ =

ei∆H(s) ∼
(

ei δ
2
(1−s)H0eiδsHP ei δ

2
(1−s)H0

)
∆
δ

. We have ver-

ified that we can maintain a faithful simulation with
δ = ∆. The split of exponentials in Trotter’s expansion
is chosen so that H0 is separated from HP . This brings
the advantage that each piece of the evolution operator
can be decomposed in mutually commuting elementary
gates:

ei δ
2
(1−s)H0 =

n
∏

i=1

ei δ
4
(1−s)di(1−σx

i ) , (2)

and

eiδsHP =
∏

c(i,j,k) e
iδs(zi+zj+zk−1)2

=
∏

c(i,j,k) e
iδs(z2

i −2zi)eiδs(z2
j −2zj)eiδs(z2

k−2zk)eiδs

ei2δszizjei2δszizkei2δszjzk . (3)

The adiabatic evolution is thus finally reduced to a series
of one and two-qubit gates. The detailed way these gates
operate on the MPS follows the original idea of ref. [3]:

1. A one-qubit gate acting on qubit a only involves an
updating of A(a) that goes as follows:

U (a)A
(a)ia

αβ |ia〉 = A
(a)ia

αβ U
(a)
iai′a

|i′a〉 , (4)

which corresponds to the local updating rule

A′(a)i′a
αβ = U

(a)
iai′a

A
(a)ia

αβ . (5)

This gate does not affect ancillae indices. Entanglement
is unaffected as we are just performing local operations.

As an example, consider the one-qubit gate U (a) =

σ
(a)
x , σ

(a)
x being the usual Pauli matrix

σ(a)
x =

(

0 1
1 0

)

(6)

acting on qubit a. Then, we have the following simple
updating rule for A(a):

(

A′(a)0
αβ

A′(a)1
αβ

)

=

(

0 1
1 0

)

(

A
(a)0
αβ

A
(a)1
αβ

)

=

(

A
(a)1
αβ

A
(a)0
αβ

)

. (7)

2. A two-qubit gate involving contiguous qubits a and
a+ 1 follows a similar strategy. Let us define

U
(a,a+1)
i′ai′

a+1
,iaia+1

A
(a)ia

αβ A
(a+1)ia+1

βγ ≡ Θ
i′ai′a+1

αγ . (8)

Unlike one-qubit gates, interacting gates do not preserve
the product form of the tensors A. To reestablish the
MPS structure we need to rewrite Θ using a Schmidt
decomposition. The procedure to follow is to compute
the reduced density matrix from the cut of the system
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between the a and a + 1 sites, which for the right side

reads ρij
αγ = |λ(a−1)

β |2Θki
βαΘ∗kj

βγ , where we have made use

of the χ known Schmidt coefficients λ
(a−1)
β for the cut

between the a− 1 and the a sites. After the diagonaliza-
tion of ρ using (iα) and (jγ) as composed indices, we di-
rectly read from the eigenvalues the updated 2χ Schmidt

coefficients λ′
(a)
β for this cut, and the updated matrices

A′(a+1)ia+1

βγ from the coefficients of the eigenvectors. Fi-
nally, the new tensors for qubit a are easily calculated as

A′(a)ia

αβ = A′(a+1)ia+1

βγ Θ
iaia+1

αγ .

Let us clarify this procedure with a simple example:
consider the quantum state of two qubits

|ψ〉 = |00〉 . (9)

It is easy to verify that the above state is described by
the following values of the matrices A(a):

A
(1)0
1α = A

(2)0
α1 = δ1,α

A
(1)1
1α = A

(2)1
α1 = 0 . (10)

Notice that since the state is separable χ = 1. At this
point, let us apply the two-qubit gate

U (1,2) =









1√
2

0 0 1√
2

0 1 0 0
0 0 1 0
1√
2

0 0 − 1√
2









(11)

to the quantum state |ψ〉:

U (1,2)|ψ〉 =
1√
2

(|00〉 + |11〉) . (12)

Since the resultant state is a maximaly entangled state
of 2 qubits, we expect χ to be bigger than 1. In order to

evaluate the updated matrices A′(a)
for qubits 1 and 2

we compute the quantity defined in equation (8), which
in our case turns out to be

Θ00 = Θ11 =
1√
2

Θ01 = Θ10 =
1√
2
. (13)

The density matrix for qubit 2 (which in this case is
equivalent to the density matrix for qubit 1) then reads

ρ =

(

1
2 0
0 1

2

)

. (14)

Since the above density matrix is already diagonal, it is
clear that the updated Schmidt coefficients will be

λ′
(1)
1 = λ′

(1)
2 =

1√
2

(15)

and, as expected, we see that χ = 2 since entanglement
has been created by the two-qubit gate. From the above

expressions it is simple to get the value of the updated

matrices A′(a)
for qubits 1 and 2:

A′(1)0
11 = A′(2)0

11 = 1

A′(1)1
12 = A′(2)1

21 = 1

A′(1)0
12 = A′(2)0

21 = 0

A′(1)1
11 = A′(2)1

11 = 0 . (16)

3. Operations involving non-contiguous qubits (as in
Exact Cover clauses) can be reduced to the case 2 us-
ing SWAP operations, producing an overhead of O(n)
operations per clause.

The exact simulation of a quantum computer is then
completely defined. The running time of this algorithm
scales as ∼ Tnmχ3. Efficiency depends on the way the
growth of the ancillae space is handled. To keep the sim-
ulation under control we define a truncation scheme of
the exact simulation. We choose to use a local proce-
dure, namely, we keep the first χ terms out of the 2χ in
the Schmidt decomposition defined in the point 2 above.
Only the terms that carry most of the entanglement in
the decomposition are kept [3]. This reasonable trunca-
tion carries an inherent -but always under control- loss
of unitarity, since the sum of the retained squared eigen-
values will not reach 1. As we shall see, larger χ’s allow
for more faithful simulations. Alternatively, it would be
possible to recast the whole enlarged state into its origi-
nal size in an optimal way [6]. While this second method
is manifestly more precise, it carries an operational time
overhead. It is then worth analyzing both techniques. In
this paper we shall focus on the first one and leave the
second for a separate publication.

We have implemented a number of optimizations upon
the above basic scheme. For any non-local gate there is
an overhead of SWAP operations that damage the preci-
sion of the computation. To minimize this effect, every
three-qubit clause is operated as follows: we bring to-
gether the three qubits with SWAPs of the left and right
qubits keeping the central one fixed and, then, we oper-
ate the two-qubit gates. Before returning the qubits to
their original position we check if any of them is needed
in the next gate. If so, we save whatever SWAP may be
compensated between the two gates. Ordering of gates
is also used to produce a saving of ∼ 2/3 of the naive
SWAPs. Diagonalization of the density matrix in the
minimum allowed Hilbert space is used as well. A further
improvement is to keep a dynamical and local χ, so that
ancillae indices at the different partitions are allowed to
take independent values and grow up to site-dependent
limits. This procedure, though, has shown essentially no
improvement upon a fixed-χ strategy.

Let us now focus on the results. We first simulate
the adiabatic algorithm with the requirement that the
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Figure 1: (Color online) Computation of the absolute error
(compared to the χ = 40 case) of the expected value of the
energy (cost function) along the adiabatic evolution for a typ-
ical instance with 30 qubits and 24 clauses for T = 100 as χ

increases. Note the increasing precision with larger χ as s

approaches the phase transition from the left-hand-side. In
the inset, the absolute cost function is plotted. A similar be-
havior is also obtained for other instances, all of them getting
the exact solution at the end of the computation.
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Figure 2: (Color online) Norm in the register as a function
of χ in logarithmic scale, for instances of 14, 18, 22 and 30
qubits.

right solution is found for a typical instance of n = 30
qubits with m = 24 clauses and T = 100. Along the
evolution we compute the expected value of the energy
(cost function) of the system, which can be calculated in
O(n poly(χ)) time. This is shown in Fig. 1. The system
remains remarkably close to the instantaneous ground-
state cost function along the approximated evolution.
The error in the cost function is minimized as χ increases.
It is noteworthy to observe how the error in the simula-
tion of the adiabatic algorithm peakes at the phase tran-
sition point. We have also checked that it is precisely
at this point where each qubit makes a decision towards
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Figure 3: (Color online) An instance with n = 100 qubits
and m = 84 clauses is solved using adiabatic evolution with
χ = 14. The plot shows the entanglement entropy of a half-
cut and the probability in solution state vs. s.

its final value in the solution. Physically, the algorithm
builds entanglement up to the critical point where the
solution is singled out and, thereon, the evolution drops
the superposition of wrong states in the register.

This success comes at the price of a controlled loss of
unitarity. We plot in Fig. 2 the norm in the simulation
as a function of χ in logarithmic scale, for instances of
14, 18, 22 and 30 qubits. The remarkable fact is that some
observables, like the energy, appear to be very robust
against this inaccuracy. Our simulations also allow to

compute the decay of the χ Schmidt coefficients λ
(a)
α at

any step of the computation. Close to criticality, and for
the central cut of the system, these can be approximately

fitted by the law log2(λ
(n/2)
α ) = b + c√

α
+ d

√
α, with

appropriate coefficients b, c and d.

The ultimate goal of finding the correct solution ap-
pears also to be very robust in the simulations we have
performed. The exact probability of success can be calcu-
lated in O(n poly(χ)) time as well. As a symbolic exam-
ple, our program has solved an instance with n = 100
qubits, that is, the adiabatic evolution algorithm has
found the correct product state out of 2100 ∼ 1030 for
a hard instance with m = 84 clauses and T = 2000. The
simulation was done with a remarkable small χ = 14 ≪
250 = χmax and is presented in Fig. 3.

The same robustness of evolving towards the correct
solution is found for any number of qubits and small χ.
We have launched a search for the minimal T that solves
samples of n-qubit hard instances in the following way:
for a set of small values of χ, we try a random instance
with an initial e.g. T = 100. If the solution is found, we
proceed to a new instance, and if not, we restart with a
slower adiabatic evolution e.g. T = 200. This slowing
down of the algorithm is performed till a correct solu-
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Figure 4: (Color online) Accumulated statistics up to n = 60
for Tmin(n) for which each instance is solved (mean and worst
cases). Averages are performed over 200 instances for each n,
except for n = 50, 60 with respectively 199, 117 instances.
Error bars give 95 per cent of confidence level in the mean.
The worst cases found are shown in the inset.

tion is found and the minimal successful Tmin is stored.
Our results are shown in Fig. 4. The average over n-
qubit instances appears to grow sub-exponentially with
n. In fact, a quadratic fit reproduces the data for n < 22,
consistently with the results found in [7]. The required
times for larger n lie below the extrapolated curve. Iso-
lated instances, however, may require larger times. Since
the worst Tmin found depends on the interpolating path,
finding an instance that needs a very large Tmin is no
counterproof for the efficiency of the adiabatic algorithm,
as alternative paths may solve the instance in a shorter
T [7].

In this paper we have presented simulations of quan-
tum computation based on matrix product states that
can be taken up to 100 qubits. The remarkable fact that
the algorithm finds the correct solution to a large hard
instance and the robustness in the expected energy is
to be contrasted with the loss of unitarity inherent to

the local truncation scheme. This drawback may well be
ameliorated if optimal truncations are implemented.
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