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We demonstrate, in the context of quadratic fermion lattice models in one and two spatial dimensions, the
potential of entanglement renormalization (ER) to define a proper real-space renormalization group transfor-
mation. Our results show the validity of the multiscale entanglement renormalization ansatz to describe certain
ground states in two dimensions, including quantum critical states. They also unveil a connection between the
performance of ER and the logarithmic violations of the boundary law for entanglement in systems with a
one-dimensional Fermi surface. ER is recast in the language of creation/annihilation operators and correlation

matrices.
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I. INTRODUCTION

The renormalization group (RG), concerned with the
change of physics with the observation scale, is among the
main ideas underlying the theoretical structure of statistical
mechanics and quantum field theory and is of central impor-
tance in the modern formulation of critical phenomena and
phase transitions.! Its influence extends well beyond the con-
ceptual domain: RG transformations are also the basis of
numerical approaches to the study of strongly correlated
many-body systems.

In a lattice model, a real-space RG transformation pro-
duces a coarse-grained system by first joining the lattice sites
into blocks and then replacing each block with an effective
site.> Two very natural requirements for a RG transformation
are (i) it should preserve the long-distance physics of the
system; and (ii) when this physics is invariant under changes
of scale, the system should be a fixed point of the RG
transformation.

For the important case of a quantum system at zero tem-
perature, the first requirement is fulfilled if, as determined by
White in his density matrix renormalization group (DMRG),?
the vector space of the effective site retains the local support
of the ground state. Entanglement renormalization (ER)
(Ref. 4) has recently been proposed in order to simulta-
neously meet the second requirement. By using disentan-
glers, ER aims to produce a coarse-grained lattice locally
identical to the original one in the sense that their sites have
the same vector space dimension. When this is accom-
plished, the original system and its coarse-grained version
can be meaningfully compared, e.g., through their Hamilto-
nians or ground-state properties, leading to a proper real-
space RG flow.

Promisingly, ER has been successfully demonstrated for
the one-dimensional (1D) quantum Ising model with trans-
verse magnetic field, where it has been shown that, indeed, at
the quantum critical point the system is invariant under the
resulting RG transformation.* However, plenty of work is
still required to characterize the main features and range of
applicability of this new approach and, in particular, it re-
mains to be seen whether ER also works in the computation-
ally more challenging context of two-dimensional (2D) lat-
tice systems, where DMRG can no longer analyze large
systems.
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In this paper we explore the performance of ER in sys-
tems of spinless fermion both on ID and 2D lattices, as
specified by the quadratic Hamiltonian

A= [dla, +dla, - Wala + a,a)] -0 dla,, (1)
(rs) r

where N and vy are the chemical and pairing potentials and
the first sum involves only nearest neighbors. In spite of its

simplicity, Hamiltonian H contains a rich phase diagram as a
function of N\ and v, including insulating, conducting, and
superconducting phases.> Importantly, the corresponding
ground states span all known forms of entropy scaling.>® In

addition, H can be diagonalized through linear (Fourier and
Bogoliubov) transformations of the fermion operators d and
a" while, by Wick’s theorem, all properties of its Gaussian
ground state | W) can be extracted from the two-point cor-
relators (d'd,) and (d,d,). Then, provided that our RG trans-
formation also maps fermion modes linearly, the entire
analysis can be conducted in the space of two-point correla-
tors and quadratic Hamiltonians of N fermionic modes, as
represented by N X N matrices. Hence quadratic fermionic
models such as Eq. (1) offer an appealing testing ground for
ER, one where computational costs have been greatly sim-
plified [e.g., H can be diagonalized exactly with just O(N?)
operations] while keeping a rich variety of nontrivial ground-
state structures.

II. COARSE-GRAINING NONINTERACTING
FERMION SYSTEMS

We start by rephrasing, in the language of correlation ma-
trices, the process of coarse graining a D-dimensional (hy-
percubic) lattice. We assume that the system is in the ground

state |Wgg) of H, which we compute using standard analytic
techniques.’ It is convenient to redraw the hypercubic lattice
so that each site contains P=p"” fermion modes for some
integer p. Then a hypercube of 27 sites defines a block that
contains P2” modes. The goal of the RG transformation is to
replace this block with just one effective site made of P’
modes, with P’ < P2P. We would like to have P’ =P so that
the sites of the coarse-grained and original lattices are iden-
tical and we can compare the corresponding Hamiltonians or

©2010 The American Physical Society


https://core.ac.uk/display/15091722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.81.235102

G. EVENBLY AND G. VIDAL

ground-state reduced density matrices. However, in the
coarse-graining step only modes of the block that are disen-
tangled from the rest of the system can be removed. As a
result, P’ often must be larger than P.

For the sake of simplicity, we continue the analysis for the
case of a 1D lattice. Let us temporarily replace the N spinless
fermion operators d in Eq. (1) with 2N (self-adjoint) Majo-
rana fermion operators ¢,

A

a,—a

- (2)

» N AF v
Cy1 =darta,, €= i

The ground state |W ) is then completely specified by

<ér5s> = 5}‘5 + il—‘rS’ (3)

where I, henceforth referred to as the correlation matrix, is
real and antisymmetric. Similarly, the reduced density matrix
pgs for a block made of two sites, that is, with L=2P spin-
less modes (equivalently, 2L Majorana modes) is described
by a 2L X 2L submatrix I'; of I'. This matrix is brought into
(block) diagonal form by a special orthogonal transformation
V,

Lo v,
VILVi=o ol Ve SO(2L), “4)
_v,

r=1

where 0=v,=1 are the eigenvalues of I';, each one associ-
ated with a pair of Majorana fermions. These pairs recom-
bine into L spinless fermions in a product state'?

1+v,
L L 2
PGs = ® o,= ® s (5)
r=1 r=1 O l—Ur

2

where Q,, the state of a spinless fermion mode, is mixed if
v,<1 and pure if v,=1. Notice that since the ground state
|Wss) is a pure state, a mode in a mixed state must be en-
tangled with modes outside the block, whereas a mode in a
pure state is unentangled from the rest of the system. We
build an effective site by removing from the block, or pro-
jecting out from T';, all the modes that are unentangled
(pure), and just keeping those P’ modes that are entangled
(mixed). In this way, the coarse-grained lattice retains the
ground-state properties.

III. ENTANGLEMENT RENORMALIZATION APPLIED
TO NONINTERACTING FERMIONS

The key idea of ER, see Fig. 1, is to use disentangling
unitary transformations, or disentanglers, to diminish P’ by
increasing the number of modes in the block that are unen-
tangled from the rest of the system. A disentangler is imple-
mented through a special orthogonal matrix U € SO(2L) that
acts on two neighboring sites across the boundary of the
block, whereas the coarse graining is implemented by an
isometry W=RY p, that selects the P’ spinless fermion modes
to be kept in the effective site, where R € SO(2L) and
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FIG. 1. (Color online) Top: a block of two sites (four modes) is
coarse grained into an effective site by first applying disentanglers
U across the boundary of the block and then using isometry W to
project out two modes. Bottom: same RG transformation written in
the language of correlation matrices, Eq. (7).

v _é{ 0 gr} 1 r=P ©)
P dl-e 0 =0 r>p'

Let I';; describe three consecutive blocks. Then the correla-
tion matrix I'; for the effective site reads (Fig. 1)

;=W (Ue&UT; (U UW. (7)

Similarly, the correlation matrix ', for the modes to be re-
moved is

T, =Wl U e U)'T,(Ue U)W, (®)

— .01

W=R(Y,-Yp), Y, =@, 1ol 9)
Our goal is to maximize the purity of the modes to be pro-
jected out so that they become as unentangled as possible.
The sum of their purities, Efzp, +1U 18 half of the antisym-

metric trace of fz, tr(l:LYD. Consequently, U and W are
obtained from the optimization

max  tr(T,Y]) (10)

U,ReSO(2N)

that we address through a sequence of alternating optimiza-
tions for U and R."!

Then, given the correlation matrix I" for |Wg), the RG
transformation is implemented in three steps: (i) first a sub-
matrix I'5; for three consecutive blocks is extracted from I';
(ii) then disentangler U and isometry W are computed using
the optimization [Eq. (10)] while keeping P’'=P modes in
the effective site; (iii) finally, U and W are used to transform
the original N-mode system into a coarse-grained system
with just N/2 modes and effective correlation matrix I'".
Some of the modes that are removed are still slightly mixed.
Their mixness €.= 1—uv, quantifies the errors introduced. It-
eration of the RG transformation produces a sequence of
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increasingly coarse-grained lattices, described by correlation
matrices {I'",I'® ..}, The corresponding disentanglers
{UW, U@ ..} and isometries {W), WP ..} constitute the
multiscale entanglement renormalization ansatz; (MERA)
(Ref. 7) for the ground state |¥gg).

IV. NUMERICAL RESULTS

We have applied the present RG approach to Hamiltonian
of Eq. (1) in the thermodynamic limit N — <. First we con-
sider 1D systems, where the whole (y,\) plane can be
mapped into the quantum spin XY model using a Jordan-
Wigner transformation. (i) For the line y=1 [equivalent to
the quantum spin Ising model] we consider P=2 modes per
site and apply 13 iterations of the RG transformation, so that
a final effective site (with just P=2 modes) corresponds to
2X2!3=16 384 modes of the original system. At the critical
point A=1, which is the most demanding, the mixedness of
the removed modes is at most €,=1.2X 107*. The effect on
local observables, even after the 13 iterations, is remarkably
small: the error in the critical ground-state energy is less than
1077, while the two-point correlators (&Ids), reconstructed
from the MERA, accumulate a relative error that ranges from
1077 for nearest neighbors to 10% for |r—s|~4000. Had we
not used disentanglers, the error in the energy would be 1073
after only a single RG transformation and an error of 10% in
the two-point correlators is already achieved for |r—s|=42.
(ii) The line y=0 (equivalent to the quantum spin XX model)
is critical for |\| < 1. Here we consider P=4 modes per site
and apply again 13 iterations of the RG transformation,
reaching sizes of 4 X2!3=32 768 modes. The errors in en-
ergy and correlators are similar to those in the line y=1. In
both cases, an analysis of the RG flow and its fixed points in
terms of entanglement is quite insightful, see Fig. 2. ER can
also be used to generate a RG transformation in the space of
Hamiltonians by replacing Eq. (10) with a minimization of
the energy. Figure 3 shows that critical systems are also fixed
points of this alternative approach that preserves the low en-
ergy spectrum.

In 2D the model has three phases, denoted I, II, and III,
where the distinct forms of entanglement scaling were
characterized.’ In phases II (critical with a Fermi surface
consisting of a finite number of points) and III (noncritical
with a gap in the energy spectrum) we are once more able to
coarse grain the system in a quasiexact, sustainable manner.
This is remarkable. The entropy of a square block made of L?
modes grows as the size of its boundary,’ S, ~ L. This im-
plies that the number of modes we should keep in an effec-
tive site grows exponentially with the number of iterations of
the RG transformation, which is precisely why DMRG does
not work for large 2D systems. Instead, disentanglers bring
this number again down to just a constant. As a result one
can, in principle, explore systems of arbitrary sizes. In par-
ticular, by considering P=4 modes per site we apply 7=4
iterations of the RG transformation, with a final block effec-
tively spanning P X 4™!=16 384 modes, while maintaining
truncation errors of the same scale as the 1D models ana-
lyzed, €,=1.1 X 10™*. As in the 1D case, the structure of fixed
points of the RG flow can be understood in terms of the
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FIG. 2. (Color online) Scaling of the entanglement entropy S;
(Ref. 10) in 1D systems. Left: quantum Ising model, y=1. Bold
(solid and dotted) lines represent entanglement at criticality, A=1.
The system is an entangled fixed point of our RG transformation:
the correlation matrices {T"), T ..} quickly converge to a fixed
F;Sing. In particular, the renormalized entanglement of a block is
constant. Thin lines correspond to a noncritical system, A=1.001,
which the RG flow, as generated by ER, eventually brings a product
(unentangled) ground state. Right: quantum XX model, y=0. Bold
and thin lines represent two critical cases, A=0 and A\
=cos(157/16). They belong to the same universality class and are
found to indeed converge to the same correlation matrix I'yy, (with
Ty # Fi:mg) and in particular to the same renormalized entropy.
renormalized entanglement, see Fig. 4. On the other hand,
phase I (critical, with a one-dimensional Fermi surface) is so
entangled that ER is no longer able to prevent the growth in
the number P’ of modes that need to be kept per site. The
system displays a logarithmic correction to the entropy,>®3
S;~ L log, L, while the MERA can only reproduce a linear
scaling,” S; ~ L, if just a constant number of modes are kept
per site, P'=P.

V. CONCLUSIONS

We have presented, in the simplified context of fermion
models with a quadratic Hamiltonian, unambiguous evidence
of the validity of the ER approach in 1D and 2D systems.
Similar derivations can be also conducted for bosonic lattice
systems with quadratic Hamiltonians.® Our results show that
the MERA (Ref. 7) is an efficient description of certain 2D
ground states. A number of examples also confirm that (i) ER
produces a quasiexact, real-space RG transformation where
the coarse-grained lattice is locally equivalent to the original
one, enabling the study of RG flow both in the space of
ground states and Hamiltonians; (ii) noncritical systems end
up in a stable fixed point of this RG flow, where the corre-
sponding ground state is a product (i.e., fully disentangled)
state, whereas scale invariant critical systems end up in an
unstable fixed point, with an entangled ground state. More-
over, ER sheds new light into the ground-state structure of
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FIG. 3. (Color online) Dispersion relation of Hamiltonian (1) in
1D with y=0, the quantum spin XX model, under successive RG
transformations. Shading indicates the Fermi sea. A sequence of
local, coarse-grained Hamiltonians is obtained {HY H® .} with
their corresponding dispersion relations {»;, v,...} converging to a
straight line, a fixed point of the RG flow. Convergence is achieved
very quickly at half filling (A=0) and slower for A=cos(37/4).
These results have been obtained by minimizing the energy while
keeping eight modes in each effective site.

two-dimensional systems with a one-dimensional Fermi sur-
face. There, the presence of logarithmic corrections in the
entropy S; of a large block>®® cannot be accounted for with
the MERA with constant number of modes P per level of
coarse graining, hinting for the need for a generalized
MERA in order to properly describe such systems.
Recently algorithms for entanglement renormalization in
2D systems of interacting particles have been proposed and
demonstrated both for spins/bosons!!'~!? and fermions.'* In
particular, the fermionic MERA algorithms'# are very valu-
able in that they also allow to study interacting fermions,
which typically remain intractable with Monte Carlo sam-
pling techniques due to the so-called sign problem. However,
the computational cost of implementing these more general
MERA algorithms scales as a large power of the MERA
bond dimension y (which is related to the modes per site
parameter P used in this work as y=2%). The high computa-
tional cost associated to the general algorithms'# for interact-
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FIG. 4. (Color online) Entanglement entropy S; of a block of
LX L modes in 2D models. Left: in the critical phase II and the
noncritical phase III (bold and fine lines, respectively) the entangle-
ment entropy grows linearly with the size L of the boundary of the
block, S; ~ L (boundary law). As in 1D, the renormalized entangle-
ment is constant for the critical model and it eventually vanishes for
the noncritical model. We have considered y=1 and A=2, A\
=2.05 for the critical and noncritical cases. Right: the critical phase
I system (y,\)=(1,2) is replotted for comparison against critical
phase I, (y,N)=(0,0), where the system has a 1D Fermi surface and
the entanglement entropy has a logarithmic correction, S;
~ L log, L. Here disentanglers are not able to reduce the renormal-
ized entanglement down to a constant.

ing systems means that in practice only small values of y can
be considered. In the present work, by exploiting the prop-
erties of free fermions, we have been able to use values of P
which equate to very large values of y and thus have been
able to accurately coarse-grained types I, II, and III phases of
2D fermionic systems with entanglement renormalization.
By analyzing the entanglement entropy scaling in each of
these phases, as shown Fig. 4, we have been able to gauge
the relative difficulty of simulating each type of phase. This
is a useful guide for the new fermionic algorithms'* as it
gives us an indication of which systems may be simpler or
harder to simulate. We expect it to also be useful in the future
development of tensor network algorithms, for instance, by
suggesting improvements in the algorithms'* required to
tackle more difficult fermionic problems, such as a type II or
type III phase.

ACKNOWLEDGMENTS

The authors thank J. Fjaerestad and R. Orus for com-
ments. Financial support of the Australian Research Council
(APA and Grant No. FF0668731) is acknowledged.

M. E. Fisher, Rev. Mod. Phys. 70, 653 (1998).

L. P. Kadanov, Physics (Long Island City, N.Y.) 2, 263 (1966).

3S. R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48,
10345 (1993).

4G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).

SW. Li, L. Ding, R. Yu, T. Roscilde, and S. Haas, Phys. Rev. B
74, 073103 (2006).

oT. Barthel, M.-C. Chung, and U. Schollwock, Phys. Rev. A 74,

022329 (2006).

7G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).

8M. M. Wolf, Phys. Rev. Lett. 96, 010404 (2006); D. Gioev and
I. Klich, ibid. 96, 100503 (2006).

9G. Evenbly and G. Vidal, New J. Phys. 12, 025007 (2010).

10G. vidal, J. L. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.
90, 227902 (2003); J. I. Latorre, E. Rico, and G. Vidal, Quan-
tum Inf. Comput. 4, 48 (2004).

235102-4


http://dx.doi.org/10.1103/RevModPhys.70.653
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevB.74.073103
http://dx.doi.org/10.1103/PhysRevB.74.073103
http://dx.doi.org/10.1103/PhysRevA.74.022329
http://dx.doi.org/10.1103/PhysRevA.74.022329
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevLett.96.010404
http://dx.doi.org/10.1103/PhysRevLett.96.100503
http://dx.doi.org/10.1088/1367-2630/12/2/025007
http://dx.doi.org/10.1103/PhysRevLett.90.227902
http://dx.doi.org/10.1103/PhysRevLett.90.227902

ENTANGLEMENT RENORMALIZATION IN... PHYSICAL REVIEW B 81, 235102 (2010)

14p Corboz, G. Evenbly, F. Verstraete, and G. Vidal, Phys. Rev. A
81, 010303(R) (2010); C. Pineda, T. Barthel, and J. Eisert,
240603 (2008). arXiv:0905.0669 (unpublished); P. Corboz and G. Vidal, Phys.
; Rev. B 80, 165129 (2009); T. Barthel, C. Pineda, and J. Eisert,

Phys. Rev. A 80, 042333 (2009).

I1G. Evenbly and G. Vidal, Phys. Rev. B 79, 144108 (2009).
121.. Cincio, J. Dziarmaga, and M. M. Rams, Phys. Rev. Lett. 100,

13G. Evenbly and G. Vidal, Phys. Rev. Lett. 102, 180406 (2009);
104, 187203 (2010).

235102-5


http://dx.doi.org/10.1103/PhysRevB.79.144108
http://dx.doi.org/10.1103/PhysRevLett.100.240603
http://dx.doi.org/10.1103/PhysRevLett.100.240603
http://dx.doi.org/10.1103/PhysRevLett.102.180406
http://dx.doi.org/10.1103/PhysRevA.81.010303
http://dx.doi.org/10.1103/PhysRevA.81.010303
http://arXiv.org/abs/arXiv:0905.0669
http://dx.doi.org/10.1103/PhysRevB.80.165129
http://dx.doi.org/10.1103/PhysRevB.80.165129
http://dx.doi.org/10.1103/PhysRevA.80.042333

