1,600 research outputs found

    Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br

    Get PDF
    Using tunable vacuum-UV radiation from a synchrotron, negative ions are detected by quadrupolar mass spectrometry following photoexcitation of three gaseous halogenated methanes CH3_3X (X = F,Cl,Br). The anions X^-, H^-, CX^-, CHX^- and CH2_2X^- are observed, and their ion yields recorded in the range 8-35 eV. The anions show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation, generically described as AB + hvv \rightarrow A^- + B+^+ (+ neutrals). Absolute cross sections for ion-pair formation are obtained by calibrating the signal intensities with those of F^- from both SF6_6 and CF4_4. The cross sections for formation of X^- + CH3_3+^+ are much greater than for formation of CH2_2X^- + H+^+. In common with many quadrupoles, the spectra of mm/zz 1 (H^-) anions show contributions from all anions, and only for CH3_3Br is it possible to perform the necessary subtraction to obtain the true H^- spectrum. The anion cross sections are normalised to vacuum-UV absorption cross sections to obtain quantum yields for their production. The appearance energies of X^- and CH2_2X^- are used to calculate upper limits to 298 K bond dissociation energies for Do^o (H3_3C-X) and Do^o (XH2_2C-H) which are consistent with literature values. The spectra suggest that most of the anions are formed indirectly by crossing of Rydberg states of the parent molecule onto an ion-pair continuum. The one exception is the lowest-energy peak of F^- from CH3_3F at 13.4 eV, where its width and lack of structure suggest it may correspond to a direct ion-pair transition

    Calculating error bars for neutrino mixing parameters

    Full text link
    One goal of contemporary particle physics is to determine the mixing angles and mass-squared differences that constitute the phenomenological constants that describe neutrino oscillations. Of great interest are not only the best fit values of these constants but also their errors. Some of the neutrino oscillation data is statistically poor and cannot be treated by normal (Gaussian) statistics. To extract confidence intervals when the statistics are not normal, one should not utilize the value for chisquare versus confidence level taken from normal statistics. Instead, we propose that one should use the normalized likelihood function as a probability distribution; the relationship between the correct chisquare and a given confidence level can be computed by integrating over the likelihood function. This allows for a definition of confidence level independent of the functional form of the !2 function; it is particularly useful for cases in which the minimum of the !2 function is near a boundary. We present two pedagogic examples and find that the proposed method yields confidence intervals that can differ significantly from those obtained by using the value of chisquare from normal statistics. For example, we find that for the first data release of the T2K experiment the probability that chisquare is not zero, as defined by the maximum confidence level at which the value of zero is not allowed, is 92%. Using the value of chisquare at zero and assigning a confidence level from normal statistics, a common practice, gives the over estimation of 99.5%.Comment: 9 pages, 6 figure

    Neutrino oscillations: measuring θ13\theta_{13} including its sign

    Full text link
    In neutrino phenomenology, terms in the oscillation probabilities linear in sinθ13\sin \theta_{13} lead naturally to the question ``How can one measure θ13\theta_{13} including its sign?'' Here we demonstrate analytically and with a simulation of neutrino data that Peμ{\mathcal P}_{e\mu} and {\mathcal {P}_{\mu\mu} at L/E=2π/Δ21L/E = 2\pi/\Delta_{21} exhibit significant linear dependence on θ13\theta_{13} in the limit of vacuum oscillations. Measurements at this particular value of L/EL/E can thus determine not only θ13\theta_{13} but also its sign, if CP violation is small.Comment: 5 pages, 5 figure

    Spatial adaptivity of the SAAF and Weighted Least Squares (WLS) forms of the neutron transport equation using constraint based, locally refined, isogeometric analysis (IGA) with dual weighted residual (DWR) error measures

    Get PDF
    This paper describes a methodology that enables NURBS (Non-Uniform Rational B-spline) based Isogeometric Analysis (IGA) to be locally refined. The methodology is applied to continuous Bubnov-Galerkin IGA spatial discretisations of second-order forms of the neutron transport equation. In particular this paper focuses on the self-adjoint angular flux (SAAF) and weighted least squares (WLS) equations. Local refinement is achieved by constraining degrees of freedom on interfaces between NURBS patches that have different levels of spatial refinement. In order to effectively utilise constraint based local refinement, adaptive mesh refinement (AMR) algorithms driven by a heuristic error measure or forward error indicator (FEI) and a dual weighted residual (DWR) or goal-based error measure (WEI) are derived. These utilise projection operators between different NURBS meshes to reduce the amount of computational effort required to calculate the error indicators. In order to apply the WEI to the SAAF and WLS second-order forms of the neutron transport equation the adjoint of these equations are required. The physical adjoint formulations are derived and the process of selecting source terms for the adjoint neutron transport equation in order to calculate the error in a given quantity of interest (QoI) is discussed. Several numerical verification benchmark test cases are utilised to investigate how the constraint based local refinement affects the numerical accuracy and the rate of convergence of the NURBS based IGA spatial discretisation. The nuclear reactor physics verification benchmark test cases show that both AMR algorithms are superior to uniform refinement with respect to accuracy per degree of freedom. Furthermore, it is demonstrated that for global QoI the FEI driven AMR and WEI driven AMR produce similar results. However, if local QoI are desired then WEI driven AMR algorithm is more computationally efficient and accurate per degree of freedom

    Vacuum-UV negative photoion spectroscopy of CF3Cl, CF3Br and CF3I

    Get PDF
    Using synchrotron radiation negative ions have been detected by mass spectrometry following vacuum-UV photoexcitation of trifluorochloromethane (CF3_3Cl), trifluorobromomethane (CF3_3Br) and trifluoroiodomethane (CF3_3I). The anions F^-, X^-, F2_2^-, FX^-, CF^-, CF2_2^- and CF3_3^- were observed from all three molecules, where X = Cl, Br or I, and their ion yields recorded in the range 8-35 eV. With the exception of Br^- and I^-, the anions observed show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation. Dissociative electron attachment, following photoionization of CF3_3Br and CF3_3I as the source of low-energy electrons, is shown to dominate the observed Br^- and I^- signals, respectively. Cross sections for ion-pair formation are put on to an absolute scale by calibrating the signal strengths with those of F^- from both SF6_6 and CF4_4. These anion cross sections are normalized to vacuum-UV absorption cross sections, where available, and the resulting quantum yields are reported. Anion appearance energies are used to calculate upper limits to 298 K bond dissociation energies for D0D^0(CF3_3-X) which are consistent with literature values. We report new data for D0D^0(CF2_2I^--F) ≤ 2.7 ± 0.2 eV and ΔfH2980\Delta_fH^0_{298} (CF2_2I+^+) ≤ (598 ± 22) kJ mol1^{-1}. No ion-pair formation is observed below the ionization energy of the parent molecule for CF3_3Cl and CF3_3Br, and only weak signals (in both I^- and F^-) are detected for CF3_3I. These observations suggest neutral photodissociation is the dominant exit channel to Rydberg state photoexcitation at these lower energies

    Inositol Polyphosphates Regulate Zebrafish Left-Right Asymmetry

    Get PDF
    SummaryVertebrate body plans have a conserved left-right (LR) asymmetry manifested in the position and anatomy of the heart, visceral organs, and brain. Recent studies have suggested that LR asymmetry is established by asymmetric Ca2+ signaling resulting from cilia-driven flow of extracellular fluid across the node. We report here that inositol 1,3,4,5,6-pentakisphosphate 2-kinase (Ipk1), which generates inositol hexakisphosphate, is critical for normal LR axis determination in zebrafish. Zebrafish embryos express ipk1 symmetrically during gastrulation and early segmentation. ipk1 knockdown by antisense morpholino oligonucleotide injection randomized LR-specific gene expression and organ placement, effects that were associated with reduced intracellular Ca2+ flux in cells surrounding the ciliated Kupffer’s vesicle, a structure analogous to the mouse node. Our data suggest that the pathway for inositol hexakisphosphate production is a key regulator of asymmetric Ca2+ flux during LR specification

    Extrapolation of survival curves using standard parametric models and flexible parametric spline models: comparisons in large registry cohorts with advanced cancer

    Get PDF
    Background: It is often important to extrapolate survival estimates beyond the limited follow-up times of clinical trials. Extrapolated survival estimates can be highly sensitive to model choice; thus, appropriate model selection is crucial. Flexible parametric spline models have been suggested as an alternative to standard parametric models; however, their ability to extrapolate is not well understood. Aim: To determine how well standard parametric and flexible parametric spline models predict survival when fitted to registry cohorts with artificially right-censored follow-up times. Methods: Adults with advanced breast, colorectal, small cell lung, non–small cell lung, or pancreatic cancer with a potential follow-up time of 10 y were selected from the SEER 1973–2015 registry data set. Patients were classified into 15 cohorts by cancer and age group at diagnosis (18–59, 60–69, 70+ y). Follow-up times for each cohort were right censored at 20%, 35%, and 50% survival. Standard parametric models (exponential, Weibull, Gompertz, log-logistic, log-normal, generalized gamma) and spline models (proportional hazards, proportional odds, normal/probit) were fitted to the 10-y data set and the 3 right-censored data sets. Predicted 10-y restricted mean survival time and percentage surviving at 10 y were compared with the observed values. Results: Across all data sets, the spline odds and spline normal models most frequently gave accurate predictions of 10-y survival outcomes. Visually, spline models tended to demonstrate better fit to the observed hazard functions than standard parametric models, both in the censored and 10-y data. Conclusions: In these cohorts, where there was little uncertainty in the observed data, the spline models performed well when extrapolating beyond the observed data. Spline models should be routinely included in the set of models that are fitted when extrapolating cancer survival data

    Neutrino Oscillations: Hierarchy Question

    Full text link
    The only experimentally observed phenomenon that lies outside the standard model of the electroweak interaction is neutrino oscillations. A way to try to unify the extensive neutrino oscillation data is to add a phenomenological mass term to the Lagrangian that is not diagonal in the flavor basis. The goal is then to understand the world's data in terms of the parameters of the mixing matrix and the differences between the squares of the masses of the neutrinos. An outstanding question is what is the correct ordering of the masses, the hierarchy question. We point out a broken symmetry relevant to this question, the symmetry of the simultaneous interchange of hierarchy and the sign of θ13\theta_{13}. We first present the results of an analysis of data that well determine the phenomenological parameters but are not sensitive to the hierarchy. We find θ13=0.152±0.014\theta_{13} = 0.152\pm 0.014, θ23=0.250.05+0.03π\theta_{23} = 0.25^{+0.03}_{-0.05} \pi and Δ32=2.45±0.14×103\Delta_{32} = 2.45\pm 0.14 \times 10^{-3} eV2^2, results consistent with others. We then include data that are sensitive to the hierarchy and the sign of θ13\theta_{13}. We find, unlike others, four isolated minimum in the χ2\chi^2-space as predicted by the symmetry. Now that Daya Bay and RENO have determined θ13\theta_{13} to be surprisingly large, the Super-K atmospheric data produce meaningful symmetry breaking such that the inverse hierarchy is preferred at the 97.2 % level.Comment: to appear in Proceedings of the 5th International Conference on Fission and Neutron Rich Nuclei (ICFN5), (Sanibel Island, Florina, Nov. 4-10, 2012).10 pages, 8 figure

    National Geodetic Satellite Program, Part II: Smithsonian Astrophysical Observatory

    Get PDF
    A sequence of advances in the determination of geodetic parameters presented by the Smithsonian Astrophysical Observatory are described. A Baker-Nunn photographic system was used in addition to a ruby-laser ranging system to obtain data for refinement of geodetic parameters. A summary of the data employed to: (1) derive coordinates for the locations of various tracking stations; and (2) determine the gravitational potential of the earth, is presented
    corecore