research

Vacuum-UV negative photoion spectroscopy of CF3Cl, CF3Br and CF3I

Abstract

Using synchrotron radiation negative ions have been detected by mass spectrometry following vacuum-UV photoexcitation of trifluorochloromethane (CF3_3Cl), trifluorobromomethane (CF3_3Br) and trifluoroiodomethane (CF3_3I). The anions F^-, X^-, F2_2^-, FX^-, CF^-, CF2_2^- and CF3_3^- were observed from all three molecules, where X = Cl, Br or I, and their ion yields recorded in the range 8-35 eV. With the exception of Br^- and I^-, the anions observed show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation. Dissociative electron attachment, following photoionization of CF3_3Br and CF3_3I as the source of low-energy electrons, is shown to dominate the observed Br^- and I^- signals, respectively. Cross sections for ion-pair formation are put on to an absolute scale by calibrating the signal strengths with those of F^- from both SF6_6 and CF4_4. These anion cross sections are normalized to vacuum-UV absorption cross sections, where available, and the resulting quantum yields are reported. Anion appearance energies are used to calculate upper limits to 298 K bond dissociation energies for D0D^0(CF3_3-X) which are consistent with literature values. We report new data for D0D^0(CF2_2I^--F) ≤ 2.7 ± 0.2 eV and ΔfH2980\Delta_fH^0_{298} (CF2_2I+^+) ≤ (598 ± 22) kJ mol1^{-1}. No ion-pair formation is observed below the ionization energy of the parent molecule for CF3_3Cl and CF3_3Br, and only weak signals (in both I^- and F^-) are detected for CF3_3I. These observations suggest neutral photodissociation is the dominant exit channel to Rydberg state photoexcitation at these lower energies

    Similar works