1,457 research outputs found
Effect of different packaging materials on the efficacy of sweet flag rhizome powder (Acorus calamus L.) treated sorghum against Sitophilus oryzae
An experiment was conducted to know the effect of different packaging materials and sweet flag rhizome on seed quality of sorghum. The graded seeds were packed in six containers viz., polythene cover, mud container, cloth bag, gunny bag, glass container and steel container and seeds were treated with two percent of sweet flag rhizome powder before storage. The different observations viz., number of live adults, seed damage (%) by Sitophilus oryzae and germination (%) of seeds were recorded. The results revealed that the sweet flag rhizome treated seeds packed in steel container, recorded lowest seed damage percentage (32.00%), number of live adults (5.11) and highest seed germination (76.00%) after nine months of treatment. Hence seeds treated with sweet flag rhizome stored in steel containers reduces the insect infestation and steel containers can be effectively used for maintaining seed quality of sorghum during storage
Herbal Remedies for Combating Irradiation: a Green Antiirradiation Approach
Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green antiirradiation approach for the betterment of human beings without high cost, side effects and toxicity
Doc2b serves as a scaffolding platform for concurrent binding of multiple Munc18 isoforms in pancreatic islet β-cells
Biphasic glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells involves soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) protein-regulated exocytosis. SNARE complex assembly further requires the regulatory proteins Munc18c, Munc18-1 and Doc2b. Munc18-1 and Munc18c are required for first- and second-phase GSIS respectively. These distinct Munc18-1 and Munc18c roles are related to their transient high-affinity binding with their cognate target (t-)SNAREs, Syntaxin 1A and Syntaxin 4 respectively. Doc2b is essential for both phases of GSIS, yet the molecular basis for this remains unresolved. Because Doc2b binds to Munc18-1 and Munc18c via its distinct C2A and C2B domains respectively, we hypothesized that Doc2b may provide a plasma membrane-localized scaffold/platform for transient docking of these Munc18 isoforms during GSIS. Towards this, macromolecular complexes composed of Munc18c, Doc2b and Munc18-1 were detected in β-cells. In vitro interaction assays indicated that Doc2b is required to bridge the interaction between Munc18c and Munc18-1 in the macromolecular complex; Munc18c and Munc18-1 failed to associate in the absence of Doc2b. Competition-based GST-Doc2b interaction assays revealed that Doc2b could simultaneously bind both Munc18-1 and Munc18c. Hence these data support a working model wherein Doc2b functions as a docking platform/scaffold for transient interactions with the multiple Munc18 isoforms operative in insulin release, promoting SNARE assembly
Electronics and Chemistry: Varying Single Molecule Junction Conductance Using Chemical Substituents
We measure the low bias conductance of a series of substituted benzene
diamine molecules while breaking a gold point contact in a solution of the
molecules. Transport through these substituted benzenes is by means of
nonresonant tunneling or superexchange, with the molecular junction conductance
depending on the alignment of the metal Fermi level to the closest molecular
level. Electron-donating substituents, which drive the occupied molecular
orbitals up, increase the junction conductance, while electron-withdrawing
substituents have the opposite effect. Thus for the measured series,
conductance varies inversely with the calculated ionization potential of the
molecules. These results reveal that the occupied states are closest to the
gold Fermi energy, indicating that the tunneling transport through these
molecules is analogous to hole tunneling through an insulating film.Comment: 14 pages, 4 figure
Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity.
AIMS/HYPOTHESIS:
Insulin secretion from pancreatic beta cells and insulin-stimulated glucose uptake into skeletal muscle are processes regulated by similar isoforms of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) and mammalian homologue of unc-18 (Munc18) protein families. Double C2 domain β (Doc2b), a SNARE- and Munc18-interacting protein, is implicated as a crucial effector of glycaemic control. However, whether Doc2b is naturally limiting for these processes, and whether Doc2b enrichment might exert a beneficial effect upon glycaemia in vivo, remains undetermined.
METHODS:
Tetracycline-repressible transgenic (Tg) mice engineered to overexpress Doc2b simultaneously in the pancreas, skeletal muscle and adipose tissues were compared with wild-type (Wt) littermate mice regarding glucose and insulin tolerance, islet function in vivo and ex vivo, and skeletal muscle GLUT4 accumulation in transverse tubule/sarcolemmal surface membranes. SNARE complex formation was further assessed using Doc2b overexpressing L6-GLUT4-myc myoblasts to derive mechanisms relatable to physiological in vivo analyses.
RESULTS:
Doc2b Tg mice cleared glucose substantially faster than Wt mice, correlated with enhancements in both phases of insulin secretion and peripheral insulin sensitivity. Heightened peripheral insulin sensitivity correlated with elevated insulin-stimulated GLUT4 vesicle accumulation in cell surface membranes of Doc2b Tg mouse skeletal muscle. Mechanistic studies demonstrated Doc2b enrichment to enhance syntaxin-4-SNARE complex formation in skeletal muscle cells.
CONCLUSIONS/INTERPRETATION:
Doc2b is a limiting factor in SNARE exocytosis events pertinent to glycaemic regulation in vivo. Doc2b enrichment may provide a novel means to simultaneously boost islet and skeletal muscle function in vivo in the treatment and/or prevention of diabetes
On the influence of spatial heterogeneity on an internal boundary layer at a short fetch
Surface layer meteorological data collected at a coastal site, at Vasco-Da-Gama (15°21′N, 73°51′E, 58.5m MSL) (13–18 July, 2002) with prevailing southwesterly surface winds are analyzed to study the characteristics of internal boundary layer at a short fetch using an instrumented tower (9 m). The spectral and turbulence characteristics of wind are compared with earlier measurements made at a comparatively homogeneous terrain and the standards available in literature. The study show the smaller eddies in the vertical velocity spectrum attains equilibrium with the underlying surface at a short fetch itself and follows spectral similarity. However, this is not followed by longitudinal and transverse velocity spectra under unstable as well as stable condition
Munc18c: a controversial regulator of peripheral insulin action
Insulin resistance, a hallmark of impaired glucose tolerance and type 2 diabetes (T2D), arises from dysfunction of insulin action and subsequent glucose uptake by peripheral tissues, predominantly skeletal muscle and fat. Exocytosis of glucose transporter (GLUT4)-containing vesicles facilitated by soluble NSF (N-ethylmaleimide-sensitive factor) attachment receptor (SNARE) protein isoforms, and Munc18c (mammalian homolog of Unc-18c) mediates this glucose uptake. Emerging evidences, including recent human clinical studies, point to pivotal roles for Munc18c in peripheral insulin action in adipose and skeletal muscle. Intriguing new advances are also initiating debates regarding the molecular mechanism(s) controlling Munc18c action. The objective of this review is therefore to present a balanced perspective of new continuities and controversies surrounding the regulation and requirement for Munc18c in the regulation of peripheral insulin action
Analysis of Irregular High Raised RCC Buildings by Using Tuned Mass Damping System
Tall buildings are indispensable in urban areas due to high cost of land, shortage of open spaces and scarcity of lands. The tall buildings are in general highly vulnerable to lateral forces arising out of cyclones and earthquakes. Designing the structures to withstand these occasional lateral forces is very expensive; hence it is not always desirable. The measures to reduce the lateral forces are by way of reducing the weight of the structure and by reducing the exposed faces to thwart wind. However the architectural requirement and the utility of the building have to be honored at all times by the structural designer. Though the technique of Tuned mass damping (TMD) is very well appreciated, the mathematical implications involved in finding the magnitude of mass, stiffness and damping of the TMD is highly intricate and suitable TMD system for a given building structure, which shall remain an integral part of the structure itself, placed on top of the building yet serves the purpose of reducing the earthquake effects on buildings. The TMD methodology adopted for three irregular R.C. framed models having + (Plus)-shape , C-shape and T-shape in plan. This apart the device shall find its utility for all zones of seismic activity and ground/structural conditions and introduces various structural motion control methodologies with focus on tuned mass damping systems. The control properties and some aspects of TMD parameters are outlined. ETABS software is used for dynamic analysis of various shapes of the framed buildings
- …
