62 research outputs found

    Assessing the permeability of landscape features to animal movement: Using genetic structure to infer functional connectivity

    Get PDF
    Human-altered environments often challenge native species with a complex spatial distribution of resources. Hostile landscape features can inhibit animal movement (i.e., genetic exchange), while other landscape attributes facilitate gene flow. The genetic attributes of organisms inhabiting such complex environments can reveal the legacy of their movements through the landscape. Thus, by evaluating landscape attributes within the context of genetic connectivity of organisms within the landscape, we can elucidate how a species has coped with the enhanced complexity of human altered environments. In this research, we utilized genetic data from eastern chipmunks (Tamias striatus ) in conjunction with spatially explicit habitat attribute data to evaluate the realized permeability of various landscape elements in a fragmented agricultural ecosystem. To accomplish this we 1) used logistic regression to evaluate whether land cover attributes were most often associated with the matrix between or habitat within genetically identified populations across the landscape, and 2) utilized spatially explicit habitat attribute data to predict genetically-derived Bayesian probabilities of population membership of individual chipmunks in an agricultural ecosystem. Consistency between the results of the two approaches with regard to facilitators and inhibitors of gene flow in the landscape indicate that this is a promising new way to utilize both landscape and genetic data to gain a deeper understanding of human-altered ecosystems. Β© 2015 Anderson et al

    Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    Get PDF
    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately

    A New GTSeq Resource to Facilitate Multijurisdictional Research and Management of Walleye Sander Vitreus

    Get PDF
    Conservation and management professionals often work across jurisdictional boundaries to identify broad ecological patterns. These collaborations help to protect populations whose distributions span political borders. One common limitation to multijurisdictional collaboration is consistency in data recording and reporting. This limitation can impact genetic research, which relies on data about specific markers in an organism\u27s genome. Incomplete overlap of markers between separate studies can prevent direct comparisons of results. Standardized marker panels can reduce the impact of this issue and provide a common starting place for new research. Genotyping-in-thousands (GTSeq) is one approach used to create standardized marker panels for nonmodel organisms. Here, we describe the development, optimization, and early assessments of a new GTSeq panel for use with walleye (Sander vitreus) from the Great Lakes region of North America. High genome-coverage sequencing conducted using RAD capture provided genotypes for thousands of single nucleotide polymorphisms (SNPs). From these markers, SNP and microhaplotype markers were chosen, which were informative for genetic stock identification (GSI) and kinship analysis. The final GTSeq panel contained 500 markers, including 197 microhaplotypes and 303 SNPs. Leave-one-out GSI simulations indicated that GSI accuracy should be greater than 80% in most jurisdictions. The false-positive rates of parent-offspring and full-sibling kinship identification were found to be low. Finally, genotypes could be consistently scored among separate sequencing runs \u3e94% of the time. Results indicate that the GTSeq panel that we developed should perform well for multijurisdictional walleye research throughout the Great Lakes region

    Identification of Novel Single Nucleotide Polymorphisms (SNPs) in Deer (Odocoileus spp.) Using the BovineSNP50 BeadChip

    Get PDF
    Single nucleotide polymorphisms (SNPs) are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus) for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer) and O. virginianus (white-tailed deer) in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (nβ€Š=β€Š1068) were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (nβ€Š=β€Š878) and loci under selection (nβ€Š=β€Š190) were identified with the FST-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1βˆ’30.1 million years before present)

    Population genetics of reintroduced wild turkeys: Insights into hybridization, gene flow, and social structure

    No full text
    Advances in molecular genetics have given us tools to address questions in wildlife species at levels of biological organization directly relevant to managers. Thus, the development of genetic markers for use in wildlife species such as the wild turkey is a high priority for their future conservation and management. In chapter 1, I developed a suite of molecular markers for use in wild turkeys, and assessed their relative utility at the individual, population, and subspecies levels. In the remainder of the dissertation, I used these markers to address specific issues relevant to wild turkey management. Despite the overwhelming success of turkey restoration in North America, primarily due to translocation efforts, the genetic implications of turkey translocations are poorly understood and bring into question both taxonomic integrity and the genetic relationships among populations in a region. Often, multiple subspecies were reintroduced into a region, creating the opportunity for hybridization to occur. In chapter 2, I identified and characterized hybridization between endemic Rio Grande turkeys and an introduced population of Merriam\u27s turkeys in the Davis Mountains of west Texas. I found high rates of immigration and hybridization in the introduced population, and limited genetic impact of introduced individuals on nearby endemic populations. At a regional level, large-scale movements of individuals through translocation efforts likely have disrupted historical patterns of population structure. Although gene flow among reintroduced populations may obscure patterns of genetic structure caused by the founding event, it is not known to what extent this occurs in turkeys. I found evidence of gene flow among reintroduced populations in Indiana; however, the magnitude of genetic interchange was insufficient to obscure the genetic signature of the initial reintroduction event in most populations. In the fourth chapter, I investigated the impacts of seasonal variation in social organization on estimates of genetic structure in local wild turkey populations. The social structure of turkeys varies greatly between winter and spring, and I found a corresponding shift in estimates of genetic structure between these two seasons

    Data from: Fine-scale landscape genetics of the American badger (Taxidea taxus): disentangling landscape effects and sampling artifacts in a poorly understood species

    No full text
    Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly understood species presents a number of challenges, namely, limited life history information for the focal population and spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study, we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation. However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for hypothesis testing in individual-based landscape genetics

    ExampleRoussetsafile

    No full text
    Example of a matrix of Rousset's a between all individuals calculated in Spagedi. These serve as the response variable in both partial Mantel tests and dbRDA

    Data from: Performance of partial statistics in individual-based landscape genetics

    No full text
    Individual-based landscape genetic methods have become increasingly popular for quantifying fine-scale landscape influences on gene flow. One complication for individual-based methods is that gene flow and landscape variables are often correlated with geography. Partial statistics, particularly Mantel tests, are often employed to control for these inherent correlations by removing the effects of geography while simultaneously correlating measures of genetic differentiation and landscape variables of interest. Concerns about the reliability of Mantel tests prompted this study, in which we use simulated landscapes to evaluate the performance of partial Mantel tests and two ordination methods, distance-based redundancy analysis (dbRDA) and redundancy analysis (RDA), for detecting isolation by distance (IBD) and isolation by landscape resistance (IBR). Specifically, we described the effects of suitable habitat amount, fragmentation and resistance strength on metrics of accuracy (frequency of correct results, type I/II errors and strength of IBR according to underlying landscape and resistance strength) for each test using realistic individual-based gene flow simulations. Mantel tests were very effective for detecting IBD, but exhibited higher error rates when detecting IBR. Ordination methods were overall more accurate in detecting IBR, but had high type I errors compared to partial Mantel tests. Thus, no one test outperformed another completely. A combination of statistical tests, for example partial Mantel tests to detect IBD paired with appropriate ordination techniques for IBR detection, provides the best characterization of fine-scale landscape genetic structure. Realistic simulations of empirical data sets will further increase power to distinguish among putative mechanisms of differentiation
    • …
    corecore