163 research outputs found
MissForest - nonparametric missing value imputation for mixed-type data
Modern data acquisition based on high-throughput technology is often facing
the problem of missing data. Algorithms commonly used in the analysis of such
large-scale data often depend on a complete set. Missing value imputation
offers a solution to this problem. However, the majority of available
imputation methods are restricted to one type of variable only: continuous or
categorical. For mixed-type data the different types are usually handled
separately. Therefore, these methods ignore possible relations between variable
types. We propose a nonparametric method which can cope with different types of
variables simultaneously. We compare several state of the art methods for the
imputation of missing values. We propose and evaluate an iterative imputation
method (missForest) based on a random forest. By averaging over many unpruned
classification or regression trees random forest intrinsically constitutes a
multiple imputation scheme. Using the built-in out-of-bag error estimates of
random forest we are able to estimate the imputation error without the need of
a test set. Evaluation is performed on multiple data sets coming from a diverse
selection of biological fields with artificially introduced missing values
ranging from 10% to 30%. We show that missForest can successfully handle
missing values, particularly in data sets including different types of
variables. In our comparative study missForest outperforms other methods of
imputation especially in data settings where complex interactions and nonlinear
relations are suspected. The out-of-bag imputation error estimates of
missForest prove to be adequate in all settings. Additionally, missForest
exhibits attractive computational efficiency and can cope with high-dimensional
data.Comment: Submitted to Oxford Journal's Bioinformatics on 3rd of May 201
Technical Services and Library Systems Customer Service Assessment
This survey instrument was developed to gauge internal customer satisfaction with the services offered by the University at Albany Libraries Technical Services and Library Systems Division
Association of cerebellar volume with cognitive and motor function in adults with congenital heart disease
INTRODUCTION
Patients with congenital heart disease (CHD) are at risk for cognitive and motor function impairments, brain injury, and smaller total brain volumes. The specific vulnerability of the cerebellum and its role in cognitive and motor functions in adults with congenital heart disease is not well defined.
METHODS
Forty-three patients with CHD and 53 controls between 18 and 32 years underwent brain magnetic resonance imaging and cognitive, executive (EF), and motor function assessment. Cerebellar volumes were obtained using EasyMeasure and SUIT Toolbox. Associations between cerebellar volumes and cognitive and motor function were calculated using linear models.
RESULTS
General cognitive and pure motor functions were lower in patients compared to controls (P 0.1), the posterior cerebellar lobe was smaller in patients with more complex CHD (P = 0.006). Smaller posterior cerebellar gray matter was not associated with cognitive functions. Smaller anterior cerebellar gray matter was not significantly related to motor functions (P > 0.1).
CONCLUSION
In adults with CHD, cerebellar volume was largely unimpaired. Patients with more complex CHD may be vulnerable to changes in the posterior cerebellar gray matter. We found no significant contribution of cerebellar gray matter to cognitive and motor impairments. More advanced imaging techniques are necessary to clarify the contribution of the cerebellum to cognitive and motor functions
Neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices in neonatal congenital heart disease: a European survey
BACKGROUND
Brain injury and neurodevelopmental impairment remain a concern in children with complex congenital heart disease (CHD). A practice guideline on neuromonitoring, neuroimaging, and neurodevelopmental follow-up in CHD patients undergoing cardiopulmonary bypass surgery is lacking. The aim of this survey was to systematically evaluate the current practice in centers across Europe.
METHODS
An online-based structured survey was sent to pediatric cardiac surgical centers across Europe between April 2019 and June 2020. Results were summarized by descriptive statistics.
RESULTS
Valid responses were received by 25 European centers, of which 23 completed the questionnaire to the last page. Near-infrared spectroscopy was the most commonly used neuromonitoring modality used in 64, 80, and 72% preoperatively, intraoperatively, and postoperatively, respectively. Neuroimaging was most commonly performed by means of cranial ultrasound in 96 and 84% preoperatively and postoperatively, respectively. Magnetic resonance imaging was obtained in 72 and 44% preoperatively and postoperatively, respectively, but was predominantly reserved for clinically symptomatic patients (preoperatively 67%, postoperatively 64%). Neurodevelopmental follow-up was implemented in 40% of centers and planned in 24%.
CONCLUSIONS
Heterogeneity in perioperative neuromonitoring and neuroimaging practice in CHD in centers across Europe is large. The need for neurodevelopmental follow-up has been recognized. A clear practice guideline is urgently needed.
IMPACT
There is large heterogeneity in neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices among European centers caring for neonates with complex congenital heart disease. This study provides a systematic evaluation of the current neuromonitoring, neuroimaging, and neurodevelopmental follow-up practice in Europe. The results of this survey may serve as the basis for developing a clear practice guideline that could help to early detect and prevent neurological and neurodevelopmental sequelae in neonates with complex congenital heart disease
A model for cyclotron resonance scattering features
(abbreviated version of the abstract) We study the physics of cyclotron line
formation in the high-energy spectra of accreting X-ray pulsars using Monte
Carlo methods, assuming that the line-forming region is a low-density electron
plasma in a sub-critical magnetic field. We investigate the dependence of the
shape of the fundamental line on angle, geometry, optical depth and
temperature. We also discuss variations of the line ratios for non-uniform
magnetic fields. These numerical predictions for the line profiles are linked
to results from observational data analysis using an XSPEC model based on the
Monte Carlo simulations. We apply this model to observational data from RXTE
and INTEGRAL. The predicted strong emission wings of the fundamental cyclotron
feature are not found in observational data, hinting at a bottom illuminated
slab geometry for line formation.Comment: 16 pages, 15 figures, Astron. Astrophys. (in press
A Uniform Description of Perioperative Brain MRI Findings in Infants with Severe Congenital Heart Disease:Results of a European Collaboration
BACKGROUND AND PURPOSE: A uniform description of brain MR imaging findings in infants with severe congenital heart disease to assess risk factors, predict outcome, and compare centers is lacking. Our objective was to uniformly describe the spectrum of perioperative brain MR imaging findings in infants with congenital heart disease. MATERIALS AND METHODS: Prospective observational studies were performed at 3 European centers between 2009 and 2019. Brain MR imaging was performed preoperatively and/or postoperatively in infants with transposition of the great arteries, single-ventricle physiology, or left ventricular outflow tract obstruction undergoing cardiac surgery within the first 6 weeks of life. Brain injury was assessed on T1, T2, DWI, SWI, and MRV. A subsample of images was assessed jointly to reach a consensus. RESULTS: A total of 348 MR imaging scans (180 preoperatively, 168 postoperatively, 146 pre- and postoperatively) were obtained in 202 infants. Preoperative, new postoperative, and cumulative postoperative white matter injury was identified in 25%, 30%, and 36%; arterial ischemic stroke, in 6%, 10%, and 14%; hypoxic-ischemic watershed injury in 2%, 1%, and 1%; intraparenchymal cerebral hemorrhage, in 0%, 4%, and 5%; cerebellar hemorrhage, in 6%, 2%, and 6%; intraventricular hemorrhage, in 14%, 6%, and 13%; subdural hemorrhage, in 29%, 17%, and 29%; and cerebral sinovenous thrombosis, in 0%, 10%, and 10%, respectively. CONCLUSIONS: A broad spectrum of perioperative brain MR imaging findings was found in infants with severe congenital heart disease. We propose an MR imaging protocol including T1-, T2-, diffusion-, and susceptibility-weighted imaging, and MRV to identify ischemic, hemorrhagic, and thrombotic lesions observed in this patient group
Predictors of quality of life in young adults with congenital heart disease
Aims: The aim of this study was to identify medical and psychosocial risk factors for impaired health-related quality of life (HRQoL) and poor psychological adjustment (PA) in young adults with congenital heart disease (CHD).
Methods and Results: A group of 188 patients (43% females, ages 18-30 years) with various types of CHD and 139 age-matched healthy controls (57% females) completed questionnaires assessing HRQoL, PA, social support, significant life events in the past year, education level, civil status, and employment status. Medical variables were retrieved from the patients' hospital records. Patients reported worse physical HRQoL than controls but similar mental HRQoL and PA. Female CHD patients showed worse physical and mental HRQoL and poorer PA than males. In CHD patients, a lower educational level and lower physical exercise capacity predicted lower physical HRQoL, but complexity of CHD was not related to HRQoL or PA. Less social support was associated with lower mental HRQoL and poorer PA in CHD patients.
Conclusion: Young adults with CHD have impaired physical HRQoL but normal mental HRQoL and PA. Lower physical exercise capacity, female sex, less social support and lower educational level predict an unfavorable quality of life and PA. This subgroup of patients should be monitored more closely and provided with special psychosocial care to improve long-term outcome
Motor Abilities in Adolescents Born Preterm Are Associated With Microstructure of the Corpus Callosum
Background: Preterm birth is associated with increased risk of neuromotor impairment. Rates of major neuromotor impairment (cerebral palsy) have decreased; however, in a large proportion of those who do not develop cerebral palsy impaired neuromotor function is observed and this often has implications for everyday life. The aim of this study was to investigate motor performance in preterm born adolescents without cerebral palsy, and to examine associations with alterations of motor system pathway structure.
Design/Methods: Thirty-two adolescents (12 males) without cerebral palsy, born before 33 weeks of gestation (mean 27.4 weeks, SD 2.4; birth weight mean 1,084.5 g; SD 387.2), treated at a single tertiary unit, were assessed (median age 16 years; min 14, max 18). Timed performance and quality of movements were assessed with the ZĂĽrich Neuromotor Assessment. Neuroimaging included Diffusion Magnetic Resonance Imaging for tractography of the major motor tracts and measurement of fractional anisotropy as a measure of microstructure of the tracts along the major motor pathways. Separate analyses were conducted for areas with predominantly single and predominantly crossing fiber regions.
Results: Motor performance in both tasks assessing timed performance and quality of movements, was poorer than expected in the preterm group in relation to norm population. The strongest significant correlations were seen between performance in tasks assessing movement quality and fractional anisotropy in corpus callosum fibers connecting primary motor, primary somatosensory and premotor areas. In addition, timed motor performance was significantly related to fractional anisotropy in the cortico-spinal and thalamo-cortical to premotor area fibers, and the corpus callosum.
Conclusions: Impairments in motor abilities are present in preterm born adolescents without major neuromotor impairment and in the absence of focal brain injury. Altered microstructure of the corpus callosum microstructure appears a crucial factor, in particular for movement quality
Risk Factors for Perioperative Brain Lesions in Infants With Congenital Heart Disease: A European Collaboration
Background: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease.
Methods: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury.
Results: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06-4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23-5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20-21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05-1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58-67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20-6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28-95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08-13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07-1.36]) also increased the risk of new cerebral sinus venous thrombosis.
Conclusions: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors.
Keywords: heart diseases; ischemic stroke; magnetic resonance imaging; pedatrics; risk factors; venous thrombosis; white matter
- …