71 research outputs found
Temporal and spatiotemporal autocorrelation of daily concentrations of Alnus, Betula, and Corylus pollen in Poland
The aim of the study was to determine the characteristics of temporal and space–time autocorrelation of pollen counts of Alnus, Betula, and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001–2005 and 2009–2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus, Betula, and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30–40 % of pollen count variation); (2) long-lasting factors (50–60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models
Puszcza Białowieska : miniprzewodnik naukowy
"Dzisiejsza roślinność Puszczy jest wynikiem procesów ekologicznych, które kształtowały ją od schyłku ostatniego zlodowacenia, kiedy ocieplenie klimatu
umożliwiło rozwój ekosystemów leśnych na tym terenie. Około 12 tysięcy lat temu rozprzestrzeniły się tu lasy sosnowo-brzozowe, a następnie kolejno przybywały inne gatunki drzew, które wędrowały z cieplejszych rejonów Europy, gdzie przetrwały
okres zlodowacenia. Stopniowo wzbogacały one tutejsze lasy i powodowały ich zróżnicowanie w zależności od warunków siedliskowych. Do pierwszych przybyszów, po sośnie i brzozie, należały wiąz i leszczyna, a między ok. 9300 a 3800 lat temu miał miejsce najbujniejszy rozwój wielogatunkowych, mieszanych lasów liściastych." (fragm.
Threat of allergenic airborne grass pollen in Szczecin, NW Poland: the dynamics of pollen seasons, effect of meteorological variables and air pollution
The dynamics of Poaceae pollen season, in particularly that of the Secale genus, in Szczecin (western Poland) 2004–2008 was analysed to establish a relationship between the meteorological variables, air pollution and the pollen count of the taxa studied. Consecutive phases during the pollen season were defined for each taxon (1, 2.5, 5, 25, 50, 75, 95, 97.5, 99% of annual total), and duration of the season was determined using the 98% method. On the basis of this analysis, the temporary differences in the dynamics of the seasons were most evident for Secale in 2005 and 2006 with the longest main pollen season (90% total pollen). The pollen season of Poaceae started the earliest in 2007, when thermal conditions were the most favourable. Correlation analysis with meteorological factors demonstrated that the relative humidity, mean and maximum air temperature, and rainfall were the factors influencing the average daily pollen concentrations in the atmosphere; also, the presence of air pollutants such as ozone, PM10 and SO2 was statistically related to the pollen count in the air. However, multiple regression models explained little part of the total variance. Atmospheric pollution induces aggravation of symptoms of grass pollen allergy
Quantifying the effects of land use and climate on Holocene vegetation in Europe
publisher: Elsevier articletitle: Quantifying the effects of land use and climate on Holocene vegetation in Europe journaltitle: Quaternary Science Reviews articlelink: http://dx.doi.org/10.1016/j.quascirev.2017.07.001 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved
The Eurasian Modern Pollen Database (EMPD), version 2
The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959
- …