12 research outputs found

    Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes

    Get PDF
    Aims/hypothesis Genome-wide association studies (GWAS) have identified more than 65 genetic loci associated with risk of type 2 diabetes. However, the contribution of distorted parental transmission of alleles to risk of type 2 diabetes has been mostly unexplored. Our goal was therefore to search for parent-of-origin effects (POE) among type 2 diabetes loci in families. Methods Families from the Botnia study (n = 4,211, 1,083 families) were genotyped for 72 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes and assessed for POE on type 2 diabetes. The family-based Hungarian Transdanubian Biobank (HTB) (n = 1,463, > 135 families) was used to replicate SNPs showing POE. Association of type 2 diabetes loci within families was also tested. Results Three loci showed nominal POE, including the previously reported variants in KCNQ1, for type 2 diabetes in families from Botnia (rs2237895: p(POE) = 0.037), which can be considered positive controls. The strongest POE was seen for rs7578597 SNP in the THADA gene, showing excess transmission of the maternal risk allele T to diabetic offspring (Botnia: p(POE) = 0.01; HTB p(POE) = 0.045). These data are consistent with previous evidence of allelic imbalance for expression in islets, suggesting that the THADA gene can be imprinted in a POE-specific fashion. Five CpG sites, including those flanking rs7578597, showed differential methylation between diabetic and non-diabetic donor islets. Conclusions/interpretation Taken together, the data emphasise the need for genetic studies to consider from which parent an offspring has inherited a susceptibility allele.Peer reviewe

    Hydroximic Acid Derivatives: Pleiotropic Hsp Co-Inducers Restoring Homeostasis and Robustness

    No full text
    According to the "membrane sensor" hypothesis, the membrane's physical properties and microdomain organization play an initiating role in the heat shock response. Clinical conditions such as cancer, diabetes and neurodegenerative diseases are all coupled with specific changes in the physical state and lipid composition of cellular membranes and characterized by altered heat shock protein levels in cells suggesting that these "membrane defects" can cause suboptimal hsp-gene expression. Such observations provide a new rationale for the introduction of novel, heat shock protein modulating drug candidates. Intercalating compounds can be used to alter membrane properties and by doing so normalize dysregulated expression of heat shock proteins, resulting in a beneficial therapeutic effect for reversing the pathological impact of disease. The membrane (and lipid) interacting hydroximic acid (HA) derivatives discussed in this review physiologically restore the heat shock protein stress response, creating a new class of "membrane-lipid therapy" pharmaceuticals. The diseases that HA derivatives potentially target are diverse and include, among others, insulin resistance and diabetes, neuropathy, atrial fibrillation, and amyotrophic lateral sclerosis. At a molecular level HA derivatives are broad spectrum, multi-target compounds as they fluidize yet stabilize membranes and remodel their lipid rafts while otherwise acting as PARP inhibitors. The HA derivatives have the potential to ameliorate disparate conditions, whether of acute or chronic nature. Many of these diseases presently are either untreatable or inadequately treated with currently available pharmaceuticals. Ultimately, the HA derivatives promise to play a major role in future pharmacotherapy
    corecore