7 research outputs found

    Photo-Fenton reaction at mildly acidic conditions: assessing the effect of bio-organic substances of different origin and characteristics through experimental design

    Full text link
    This is an Author's Accepted Manuscript of an article published in Arlen Mabel Lastre-Acosta, Rafael Vicente, Margarita Mora, Ulises Javier Jáuregui-Haza, Antonio Arques & Antonio Carlos Silva Costa Teixeira (2019) Photo-Fenton reaction at mildly acidic conditions: assessing the effect of bio-organic substances of different origin and characteristics through experimental design, Journal of Environmental Science and Health, Part A, 54:8, 711-720 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/10934529.2019.1585721[EN] Urban-waste bio-organic substances (UW-BOS) have been shown to be capable of extending the photo-Fenton reaction to mildly acidic conditions. In this study, the effects of pH (3-7), UW-BOS, H2O2 and iron concentrations on the photo-Fenton process were systematically assessed using a Doehlert experimental design and response surface methodology for two UW-BOS (CVT230 and FORSUD). Solutions of the model antibiotic sulfadiazine (SDZ) were irradiated in a solar simulator equipped with a 550W Xenon lamp. The results showed that for UW-BOS contents below 30mg L-1, SDZ removal proceeds at pH 5 with similar rates for both CVT230 and FORSUD, regardless of Fe(III) concentration. For 50mg L-1 of UW-BOS or higher, CVT230 performs better than FORSUD, even for low Fe(III) content (1-3mg L-1). In contrast, half-life times of 35-40min can only be achieved under mildly acidic conditions with FORSUD for iron concentrations higher than 10mg L-1. The better performance of CVT230 can be associated with its high hydrophilic/hydrophobic ratio, low E2:E3, higher iron content and possibly higher yields of triplet reactive species generation upon solar irradiation. The most appropriate conditions for each UW-BOS studied are discussed for the first time, which are advantageous for possible engineered applications.The authors express their gratitude to CNPq (National Council for Scientific and Technological Development) and to the European Union (PIRSES-GA-2010-269128, EnvironBOS). This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.Lastre-Acosta, AM.; Vicente Candela, R.; Mora Carbonell, M.; Jáuregui-Haza, UJ.; Arqués Sanz, A.; Teixeira, ACSC. (2019). Photo-Fenton reaction at mildly acidic conditions: assessing the effect of bio-organic substances of different origin and characteristics through experimental design. Journal of Environmental Science and Health Part A. 54(8):711-720. https://doi.org/10.1080/10934529.2019.1585721S711720548Ikehata, K., Jodeiri Naghashkar, N., & Gamal El-Din, M. (2006). Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone: Science & Engineering, 28(6), 353-414. doi:10.1080/01919510600985937Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2), 402-417. doi:10.1016/j.envint.2008.07.009Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564Wu, Y., Passananti, M., Brigante, M., Dong, W., & Mailhot, G. (2014). Fe(III)–EDDS complex in Fenton and photo-Fenton processes: from the radical formation to the degradation of a target compound. Environmental Science and Pollution Research, 21(21), 12154-12162. doi:10.1007/s11356-014-2945-1Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833-840. doi:10.1016/j.watres.2012.11.008Bernabeu, A., Palacios, S., Vicente, R., Vercher, R. F., Malato, S., Arques, A., & Amat, A. M. (2012). Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chemical Engineering Journal, 198-199, 65-72. doi:10.1016/j.cej.2012.05.056Gomis, J., Gonçalves, M. G., Vercher, R. F., Sabater, C., Castillo, M.-A., Prevot, A. B., … Arques, A. (2015). Determination of photostability, biocompatibility and efficiency as photo-Fenton auxiliaries of three different types of soluble bio-based substances (SBO). Catalysis Today, 252, 177-183. doi:10.1016/j.cattod.2014.10.015Gomis, J., Carlos, L., Prevot, A. B., Teixeira, A. C. S. C., Mora, M., Amat, A. M., … Arques, A. (2015). Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: Optimization of operational variables. Catalysis Today, 240, 39-45. doi:10.1016/j.cattod.2014.03.034Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., … Carlos, L. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176-180. doi:10.1016/j.cattod.2012.08.036Montoneri, E., Boffa, V., Savarino, P., Perrone, D., Ghezzo, M., Montoneri, C., & Mendichi, R. (2011). Acid soluble bio-organic substances isolated from urban bio-waste. Chemical composition and properties of products. Waste Management, 31(1), 10-17. doi:10.1016/j.wasman.2010.08.029Arques, A., & Bianco Prevot, A. (Eds.). (2015). Soluble Bio-based Substances Isolated From Urban Wastes. SpringerBriefs in Molecular Science. doi:10.1007/978-3-319-14744-4Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209(2-3), 224-231. doi:10.1016/j.jphotochem.2009.11.020Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., … Boffa, V. (2010). Waste-Derived Bioorganic Substances for Light-Induced Generation of Reactive Oxygenated Species. ChemSusChem, 4(1), 85-90. doi:10.1002/cssc.201000237Carlos, L., Mártire, D. O., Gonzalez, M. C., Gomis, J., Bernabeu, A., Amat, A. M., & Arques, A. (2012). Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Research, 46(15), 4732-4740. doi:10.1016/j.watres.2012.06.022Mohajerani, M., Mehrvar, M., & Ein-Mozaffari, F. (2012). Using an external-loop airlift sonophotoreactor to enhance the biodegradability of aqueous sulfadiazine solution. Separation and Purification Technology, 90, 173-181. doi:10.1016/j.seppur.2012.02.025Conde-Cid, M., Álvarez-Esmorís, C., Paradelo-Núñez, R., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Álvarez-Rodríguez, E., … Núñez-Delgado, A. (2018). Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). Journal of Cleaner Production, 197, 491-500. doi:10.1016/j.jclepro.2018.06.217Amat, A. M., Arques, A., García-Ripoll, A., Santos-Juanes, L., Vicente, R., Oller, I., … Malato, S. (2009). A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses. Water Research, 43(3), 784-792. doi:10.1016/j.watres.2008.11.017Ferreira, S. L. ., dos Santos, W. N. ., Quintella, C. M., Neto, B. B., & Bosque-Sendra, J. M. (2004). Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta, 63(4), 1061-1067. doi:10.1016/j.talanta.2004.01.015Gomis, J., Bianco Prevot, A., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., … Carlos, L. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236-243. doi:10.1016/j.cej.2013.09.009Silva, M. P., Lastre-Acosta, A. M., Mostafa, S., McKay, G., Linden, K. G., Rosario-Ortiz, F. L., & Teixeira, A. C. S. C. (2017). Photochemical generation of reactive intermediates from urban-waste bio-organic substances under UV and solar irradiation. Environmental Science and Pollution Research, 24(22), 18470-18478. doi:10.1007/s11356-017-9310-0Lastre-Acosta, A. M., Barberato, B., Parizi, M. P. S., & Teixeira, A. C. S. C. (2018). Direct and indirect photolysis of the antibiotic enoxacin: kinetics of oxidation by reactive photo-induced species and simulations. Environmental Science and Pollution Research, 26(5), 4337-4347. doi:10.1007/s11356-018-2555-4Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., & Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53(3), 955-969. doi:10.4319/lo.2008.53.3.095

    Non-conventional treatment processes for the degradation of the antibiotic sulfadiazine in aqueous medium.

    No full text
    A presença de antibióticos no meio ambiente aquático tem causado crescente preocupação mundial. Além dos relatos de resistência de bactérias a antibióticos, essa classe de fármacos também pode causar efeitos tóxicos e atuar como perturbadores endócrinos em diversos organismos vivos e, possivelmente, em humanos. Dentre os antibióticos comumente usados destacam-se as sulfonamidas, detectadas em águas subterrâneas e superficiais. Os processos avançados de oxidação (POA) têm sido apontados como tecnologias eficientes para tratamento de poluentes recalcitrantes em diferentes matrizes aquosas. Dentre os POA, o processo foto-Fenton é uma alternativa para a degradação de compostos não biodegradáveis, incluindo fármacos. Uma vez que a principal limitação do processo é o intervalo de pH (2,5- 4,0), a reação pode ser vantajosamente conduzida empregando-se substâncias bio-orgânicas solúveis (BOS) como agentes complexantes de Fe3+ em condições ligeiramente ácidas (pH 5). Por sua vez, o emprego da energia ultrassônica tem sido menos estudado. Nesse contexto, o objetivo deste trabalho é estudar a degradação do antibiótico sulfadiazina (SDZ) por meio do processo foto-Fenton na presença de substâncias bio-orgânicas solúveis (UVvis/ Fe3+/H2O2/BOS) e do processo de cavitação por meio de ultrassom (US). Os resultados obtidos mostram que a sulfadiazina é eficientemente degradada por ultrassom de alta frequência. As maiores porcentagens e taxas de remoção são obtidas usando menor frequência de operação (580 kHz), maior potência dissipada e em pH ligeiramente ácido (melhor condição: pH 5,5). Além disso, a reação de Fenton, combinada com o tratamento US, melhorou notavelmente a degradação da SDZ, particularmente quando quantidades extras de H2O2 foram adicionadas ao sistema. Por sua vez, o uso de BOS como aditivos no processo foto-Fenton apresenta influência marcante na fotodegradação da SDZ em condições ligeiramente ácidas (pH 5). Os BOS podem estabilizar espécies de ferro em solução aquosa em pH próximos ao neutro, o que constitui uma propriedade de grande interesse. Sob as condições estudadas, o BOS CVT230 foi mais eficiente do que FORSUD, provavelmente devido às diferenças nos grupos funcionais presentes na composição destas substâncias. Finalmente, foram calculados os indicadores de consumo de energia elétrica por ordem de grandeza (EEO) para o processo de ultrassom (1572 kW h m-3 ordem-1) e área do coletor por ordem de grandeza (ACO) para o processo foto-Fenton (8,07 m2 m-3 ordem-1).The potential impacts of antibiotic residues in the environment have become an emerging concern during recent years due to their relation with the development of resistant bacteria, and in some cases to their ability to cause toxic and endocrine disrupting effects in humans and other living organisms. Highlighted among the commonly used antibiotics are the sulfonamides, detected in groundwater and surface water. Advanced oxidation processes (AOP) might constitute an important alternative to deal with pharmaceuticals degradation. Among them, the photo-Fenton process has been widely used. One of its major drawbacks is the highly acidic pH needed (2,5-4,0) to avoid the formation of photochemically inactive iron oxides and hydroxides. The ability of soluble bio-organic substances (SBO) to complex metal cations such as iron is useful for the development of photo-Fenton at mild acidic conditions (pH 5). In turn, the use of ultrasonic energy has been less studied. In this context, the aim of this work is to study the degradation of the antibiotic sulfadiazine (SDZ) by the photo-Fenton process in the presence of soluble bio-organic substances (UV-vis/Fe3+/H2O2/SBO) and by ultrasonic cavitation (US). The results confirm that SDZ is effectively degraded by highfrequency ultrasound. Higher SDZ percent removals and removal rates were observed for the lowest operating frequency (580 kHz), higher dissipated power, and in slightly acidic solution (pH 5.5). On the other hand, SDZ degradation is highly improved in the case of the US/ Fe(II)/H2O2 system. The use of the SBO as Fenton additives in turn has a remarkable influence in SDZ photodegradation at slightly acid conditions (pH 5). This could be ascertained to the complexation of iron by the SBO, hence maintained in the reaction medium as a photoactive species. Under the studied conditions, the BOS CVT230 was more efficient than FORSUD, probably due to differences in the functional groups present in the composition of these substances. Finally, the figures-of merit electrical energy per order (EEO) and collector area per order (ACO) were calculated for the ultrasound (1572 kW h m-3 ordem-1) and photo-Fenton (8,07 m2 m-3 ordem-1) processes respectively

    Low Pressure UV Photolysis of the Pharmaceutical Compounds Acetaminophen, Atenolol, Bezafibrate, Diclofenac and Ibuprofen

    No full text
    Pharmaceutically active compounds (PhACs) are continuously introduced into the environment by human and livestock excretion, hospital sewage and pharmaceutical effluents. While the performance of UV photolysis regarding PhACs degradation may be limited by low quantum yields, it may be efficient when the contaminants significantly absorb UV radiation. In this work, the direct photolysis under 254 nm UVC radiation of acetaminophen (ACT), atenolol (ATL), bezafibrate (BZF), diclofenac (DIC) and ibuprofen (IBU), isolated and in mixture, was investigated. The results showed that PhAC photolysis followed apparent first-order kinetics, with removals ranging from 32% to 99% after 60 min, while all the compounds exhibited lower photolysis rates when mixed in solution. Less than 13% mineralization was achieved. The toxicity of irradiated solutions of Vibrio fischeri remained the same or slightly decreased for ATL, BZF and IBU, increased for ACT, and notably decreased for DIC; nevertheless, the solution of mixed PhACs became very toxic following irradiation, showing the need for oxidant addition for removing residual toxicity

    Low Pressure UV Photolysis of the Pharmaceutical Compounds Acetaminophen, Atenolol, Bezafibrate, Diclofenac and Ibuprofen

    No full text
    Pharmaceutically active compounds (PhACs) are continuously introduced into the environment by human and livestock excretion, hospital sewage and pharmaceutical effluents. While the performance of UV photolysis regarding PhACs degradation may be limited by low quantum yields, it may be efficient when the contaminants significantly absorb UV radiation. In this work, the direct photolysis under 254 nm UVC radiation of acetaminophen (ACT), atenolol (ATL), bezafibrate (BZF), diclofenac (DIC) and ibuprofen (IBU), isolated and in mixture, was investigated. The results showed that PhAC photolysis followed apparent first-order kinetics, with removals ranging from 32% to 99% after 60 min, while all the compounds exhibited lower photolysis rates when mixed in solution. Less than 13% mineralization was achieved. The toxicity of irradiated solutions of Vibrio fischeri remained the same or slightly decreased for ATL, BZF and IBU, increased for ACT, and notably decreased for DIC; nevertheless, the solution of mixed PhACs became very toxic following irradiation, showing the need for oxidant addition for removing residual toxicity

    Identificación de riesgos ambientales en el laboratorio de radioquímica de la facultad de ciencias y tecnologías nucleares

    No full text
    Organizations of all kinds are more and more interested in reaching and demonstrating a sustainable environmental performance by means of the control of the risks of their activities, products and services on the environment. The main purpose of the present investigation is to identify the environmental risks in the Radiochemistry Laboratory of the Faculty of Science and Nuclear Technologies (FCTN), allowing the organization to evaluate, to control, to minimize and/or to eliminate the environmental associated risks at the laboratory. In order to achieve such purpose, it was carried out an environmental diagnosis of the current situation of the laboratory and afterwards, it was made the evaluation of the environmental risks detected by means of the Managerial Procedure of Integrated Risks. There were also set out measures to diminish significant environmental risksOrganizaciones de todo tipo están cada vez más interesadas en alcanzar y demostrar un sostenido desempeño ambiental mediante el control de los riesgos de sus actividades, productos y servicios sobre el ambiente. La presente investigación tiene como objetivo identificar los riesgos ambientales en el Laboratorio de Radioquímica de la Facultad de Ciencias y Tecnologías Nucleares (FCTN), permitiéndole a la organización evaluar, controlar, minimizar y/o eliminar dichos riesgos asociados al ambiente en el laboratorio. Para ello se realizó un diagnóstico ambiental de la situación actual del laboratorio y seguidamente se realizó la evaluación de los riesgos ambientales detectados mediante el Procedimiento de Gestión de Riesgos Integrados. Finalmente se proponen medidas para minimizar los riesgos ambientales significativos
    corecore