218 research outputs found
SOME ASPECTS OF ENERGY SAVING OF BURDEN MATERIAL IN THE BLAST FURNACE
To determine the possibility of self-stabilization effect for burden
surface texture and gas flow in operating blast furnace under the proper conditions
was experimentally proved for the first time, as well as the reasons of the effect
disruption
Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W
Screw dislocations in bcc metals display non-planar cores at zero temperature
which result in high lattice friction and thermally activated strain rate
behavior. In bcc W, electronic structure molecular statics calculations reveal
a compact, non-degenerate core with an associated Peierls stress between 1.7
and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations
can only be gained by using more efficient atomistic simulations based on
semiempirical interatomic potentials. In this paper we assess the suitability
of five different potentials in terms of static properties relevant to screw
dislocations in pure W. As well, we perform molecular dynamics simulations of
stress-assisted glide using all five potentials to study the dynamic behavior
of screw dislocations under shear stress. Dislocations are seen to display
thermally-activated motion in most of the applied stress range, with a gradual
transition to a viscous damping regime at high stresses. We find that one
potential predicts a core transformation from compact to dissociated at finite
temperature that affects the energetics of kink-pair production and impacts the
mechanism of motion. We conclude that a modified embedded-atom potential
achieves the best compromise in terms of static and dynamic screw dislocation
properties, although at an expense of about ten-fold compared to central
potentials
Energy Distribution of a Stringy Charged Black Hole
The energy distribution associated with a stringy charged black hole is
studied using M{\o}ller's energy-momentum complex. Our result is reasonable and
it differs from that known in literature using Einstein's energy-momentum
complex.Comment: Latex, no figure
The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten
Several transition metals were examined to evaluate their potential for
improving the ductility of tungsten. The dislocation core structure and Peierls
stress and barrier of screw dislocations in binary
tungsten-transition metal alloys (WTM) were investigated using
first principles electronic structure calculations. The periodic quadrupole
approach was applied to model the structure of dislocation. Alloying
with transition metals was modeled using the virtual crystal approximation and
the applicability of this approach was assessed by calculating the equilibrium
lattice parameter and elastic constants of the tungsten alloys. Reasonable
agreement was obtained with experimental data and with results obtained from
the conventional supercell approach. Increasing the concentration of a
transition metal from the VIIIA group, i.e. the elements in columns headed by
Fe, Co and Ni, leads to reduction of the elastic constant and
increase of elastic anisotropy A=. Alloying W with a group
VIIIA transition metal changes the structure of the dislocation core from
symmetric to asymmetric, similar to results obtained for WRe
alloys in the earlier work of Romaner {\it et al} (Phys. Rev. Lett. 104, 195503
(2010))\comments{\cite{WRECORE}}. In addition to a change in the core symmetry,
the values of the Peierls stress and barrier are reduced. The latter effect
could lead to increased ductility in a tungsten-based
alloy\comments{\cite{WRECORE}}. Our results demonstrate that alloying with any
of the transition metals from the VIIIA group should have similar effect as
alloying with Re.Comment: 12 pages, 8 figures, 3 table
Vapor-phase synthesis, growth mechanism and thickness-independent elastic modulus of single-crystal tungsten nanobelts
Single-crystal tungsten nanobelts with thicknesses from tens to hundreds of nanometers, widths of several micrometers and lengths of tens of micrometers were synthesized using chemical vapor deposition. Surface energy minimization was believed to have played a crucial role in the growth of the synthesized nanobelts enclosed by the low-energy {110} crystal planes of body-centered-cubic structure. The anisotropic growth of the crystallographically equivalent {110} crystal planes could be attributable to the asymmetric concentration distribution of the tungsten atom vapor around the nanobelts during the growth process. The elastic moduli of the synthesized tungsten nanobelts with thicknesses ranging from 65 to 306 nm were accurately measured using a newly developed thermal vibration method. The measured modulus values of the tungsten nanobelts were thickness-dependent. After eliminating the effect of surface oxidization using a core-shell model, the elastic modulus of tungsten nanobelts became constant, which is close to that of the bulk tungsten value of 410 GPa
Evolutionary history of endogenous Human Herpesvirus 6 reflects human migration out of Africa
Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, ∼70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or “reactivation” of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa
Evolutionary History of Endogenous Human Herpesvirus 6 Reflects Human Migration out of Africa.
Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, ∼70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or "reactivation" of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa
- …