112 research outputs found

    Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay

    Get PDF
    An indoor experiment involving 10 rumen-cannulated Romney sheep was conducted in May and June 1998 at AgResearch Grasslands, Palmerston North, New Zealand, under restricted feeding conditions. in order to test the hypothesis that animal factors, in particular rumen fractional outflow rate (FOR) and rumen volume, have an influence on the between-sheep variation in methane (CH4) emission. Sheep were fed 2-hourly on chaffed lucerne hay. Following an acclimatization period of 21 days, the experiment lasted 16 days. Energy and nitrogen (N) balances were measured on days 1-6. Cr-EDTA marker was continuously infused into the rumen from day 9 to 16, and rumen contents emptied and sampled on days 13 and 16. Particulate and fluid FOR were estimated using feed lignin and Cr-EDTA, respectively. Daily CH, production was measured by the sulphur hexafluoride tracer technique on days 2, 5, 6, 12 and 15 of the experiment. CH4 production (g/day) was positively correlated with the pool size of organic matter (OM) in the rumen (OM pool, g) (r = 0.84, P = 0.002), OM intake (OMI, g/day) (r = 0.67, P = 0.04), and the rumen fill (g. wet digesta) (r = 0.76, P = 0.01). Multiple regression analysis showed that CH4 production was best predicted (R-2 = 0.88) as a function of OM pool and the molar % of butyrate; however, OM pool alone accounted for a large proportion (R-2 = 0.71) of the variation in CH4 production. CH4 yield (% gross energy intake, % GEI) was negatively correlated with the particulate FOR (%/h) ( r= -0.75, P = 0.01) and buffering capacity of rumen fluid (mmol HCl) (r = -0.72, P = 0.02) but positively correlated with the digestibility of cellulose (r = 0.66, P = 0.04). Multiple regression analysis showed that CH, yield was best predicted as a function of particulate FOR, OMI (g/kg liveweight(0.75)) and the molar % of butyrate (R-2 = 0.88). Particulate FOR alone explained a large proportion (R-2 = 0.57) of the variation in CH4 Yield. Particulate FOR was negatively correlated with rumen fill (r = -0.69, P = 0.03) and digestibility of cellulose (r = -0.65, P = 0.04). These results suggest that sheep with lower rumen particulate FOR (i.e. longer rumen retention times) had larger rumen fills and higher fibre digestibilities and CH4 yields. If rumen particulate FOR is to be used as a tool for CH4 mitigation, the repeatability of its relationship to CH4 emission must be assessed, preferably under grazing conditions

    Persistence of differences between sheep in methane emission under generous grazing conditions

    Get PDF
    Four low and four high methane (CH4) emitters were selected from a flock of 20 Romney sheep on the basis of CH4 production rates per unit of intake, measured at grazing using the sulphur hexafluoride (SF,) tracer technique. Methane emissions from these sheep were monitored at grazing for four periods (P): October, November, January and February 1999/2000. All measurements were carried out on perennial ryegrass/white clover pasture under generous herbage allowance, and the sheep were maintained on similar pastures during non-measurement periods. The tracer technique was used for all the CH4 measurements and feed DM intake was calculated from total faecal collection and estimated DM digestibility. Data for liveweight (LW), gross energy intake (GEI) and CH4 emission were analysed using split-plot analysis of variance. In addition, a between-period rank order correlation analysis was carried out for CH4 emission data. Low CH4 emitters were heavier (P < 0.05) than the high emitters in all the periods, but they did not differ (P < 0.05) in their gross energy intakes (GEL MJ/kg LW0.75). Low and high CH4 emitters consistently maintained their initial rankings in CH4 yield (% GEI) throughout the subsequent periods and the correlation analysis of rank order for CH4 yield showed strong between-period correlation coefficients, although this was weaker in the last period. It is suggested that feeding conditions that maximize feed intake (e.g. generous allowance of good quality pasture under grazing) favour the expression and persistence of between-sheep differences in CH4 yield

    Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil

    Get PDF
    Based on the knowledge that alpaca (Lama pacos) have a lower fractional outflow rate of feed particles (particulate FOR) from their forestomach than sheep (San Martin 1987), the current study measured methane (CH4) production and other digestion parameters in these species in three successive experiments (1, 2 and 3): Experiment 1, lucerne hay fed indoors; Experiment 2, grazed on perennial ryegrass/white clover pasture (PRG/WC); and Experiment 3, grazed on birdsfoot trefoil (Lotus corniculatits) pasture (Lotus). Six male alpaca and six castrated Romney sheep were simultaneously and successively fed on the forages either ad libitium or at generous herbage allowances (grazing). CH4 production (g/day) (using the sulphur hexafluoride tracer technique), voluntary feed intake (VFI), diet quality, and protozoa counts and volatile fatty acid concentrations in samples of forestomach contents were determined. In addition, feed digestibility, energy and nitrogen (N) balances and microbial N supply from the forestomach (using purine derivatives excretion) were measured in Experiment 1. Diets selected by alpaca were of lower quality than those selected by sheep, and the voluntary gross energy intakes (GEI, MJ) per kg of liveweight(0.75) were consistently lower (P0.05) in their CH4 yields (% GEI) when fed on lucerne hay (5.1 v. 4.7), but alpaca had a higher CH4 yield when fed on PRG/WC (9.4 v. 7.5, P0.05) in diet N partition or microbial N yield, but alpaca had higher (P<0.05) neutral detergent fibre digestibility (0.478 v. 0.461) and lower (P<0.01) urinary energy losses (5.2 v. 5.8 % GEI) than sheep. It is suggested that differences between these species in forestomach particulate FOR might have been the underlying physiological mechanism responsible for the differences in CH4 yield, although the between-species differences in VFI and diet quality also had a major effect on it

    Methane emissions from pastoral systems: the situation in New Zealand

    Get PDF
    Methane is the major greenhouse gas of concern to countries like New Zealand and Uruguay, which have large ruminant and small human populations. The paper reviews the major factors affecting methane emission from ruminants. The relationship between DM intake and methane emission (g/d) is positive, but not strong. However, there is a stronger, but negative correlation when methane emission per unit of feed intake (kJ/100 kJ) is plotted against DM intake, suggesting that as intake increases the percentage of dietary energy lost as methane decreases. Starch and lipid are negatively correlated and fibre positively correlated with methane emission. The relationship between digestibility and methane is confounded with the effects of feed intake level: at low intakes methane increases as digestibility increases, but at high intakes methane decreases as digestibility increases. The SF6 tracer technique for estimating the methane emission of individual grazing animals is described and evaluated. Provided care is taken with SF6 permeation tube calibration it is considered that the technique gives reliable and repeatable estimates. Possible methane mitigation strategies are discussed including: reducing livestock numbers, increasing the efficiency of livestock production, exploiting natural between-animal variation in methane emission, dietary chemical additives that reduce methane, immunisation and manipulation of the rumen microbial ecosystem. While there are many interesting possibilities, more research is required before any of them is likely to be economically feasible. Methane mitigation strategies being developed in New Zealand to meet its obligations to the Kyoto Protocol are discussed. Research is focussed on developing accurate inventory methodology based on field measurements of various livestock classes and pasture types, and on possible mitigation technologies such as evaluating the cause of between-animal differences, plant inhibitors, and manipulation of the rumen microbial ecosystem

    Stable isotopes provide revised global limits of aerobic methane emissions from plants

    Get PDF
    International audienceRecently Keppler et al. (2006) discovered a surprising new source of methane ? terrestrial plants under aerobic conditions, with an estimated global production of 62?236 Tg yr?1 by an unknown mechanism. This is ~10?40% of the annual total of methane entering the modern atmosphere and ~30?100% of annual methane entering the pre-industrial (0 to 1700 AD) atmosphere. Here we test this reported global production of methane from plants against ice core records of atmospheric methane concentration (CH4) and stable carbon isotope ratios (?13CH4) over the last 2000 years. Our top-down approach determines that global plant emissions must be much lower than proposed by Keppler et al. (2006) during the last 2000 years and are likely to lie in the range 0?46 Tg yr?1 and 0?176 Tg yr?1 during the pre-industrial and modern eras, respectively

    Parity nonconservation effects in the photodesintegration of polarized deuterons

    Get PDF
    P-odd correlations in the deuteron photodesintegration are considered. The π\pi-meson exchange is not operative in the case of unpolarized deuterons. For polarized deuterons a P-odd correlation due to the π\pi-meson exchange is about 3×10−93 \times 10^{-9}. Short-distance P-odd contributions exceed essentially than the contribution of the π\pi-meson exchange.Comment: 12 pages, Latex, 3 figure

    Radiocarbon dating of methane and carbon dioxide evaded from a temperate peatland stream

    Get PDF
    Streams draining peatlands export large quantities of carbon in different chemical forms and are an important part of the carbon cycle. Radiocarbon (14C) analysis/dating provides unique information on the source and rate that carbon is cycled through ecosystems, as has recently been demonstrated at the air-water interface through analysis of carbon dioxide (CO2) lost from peatland streams by evasion (degassing). Peatland streams also have the potential to release large amounts of methane (CH4) and, though 14C analysis of CH4 emitted by ebullition (bubbling) has been previously reported, diffusive emissions have not. We describe methods that enable the 14C analysis of CH4 evaded from peatland streams. Using these methods, we investigated the 14C age and stable carbon isotope composition of both CH4 and CO2 evaded from a small peatland stream draining a temperate raised mire. Methane was aged between 1617-1987 years BP, and was much older than CO2 which had an age range of 303-521 years BP. Isotope mass balance modelling of the results indicated that the CO2 and CH4 evaded from the stream were derived from different source areas, with most evaded CO2 originating from younger layers located nearer the peat surface compared to CH4. The study demonstrates the insight that can be gained into peatland carbon cycling from a methodological development which enables dual isotope (14C and 13C) analysis of both CH4 and CO2 collected at the same time and in the same way

    Biological sources and sinks of nitrous oxide and strategies to mitigate emissions

    Get PDF
    Nitrous oxide (N 2 O) is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Global emissions continue to rise. More than two-thirds of these emissions arise from bacterial and fungal denitrification and nitrification processes in soils, largely as a result of the application of nitrogenous fertilizers. This article summarizes the outcomes of an interdisciplinary meeting, ‘Nitrous oxide (N 2 O) the forgotten greenhouse gas’, held at the Kavli Royal Society International Centre, from 23 to 24 May 2011. It provides an introduction and background to the nature of the problem, and summarizes the conclusions reached regarding the biological sources and sinks of N 2 O in oceans, soils and wastewaters, and discusses the genetic regulation and molecular details of the enzymes responsible. Techniques for providing global and local N 2 O budgets are discussed. The findings of the meeting are drawn together in a review of strategies for mitigating N 2 O emissions, under three headings, namely: (i) managing soil chemistry and microbiology, (ii) engineering crop plants to fix nitrogen, and (iii) sustainable agricultural intensification. </jats:p
    • …
    corecore