52 research outputs found

    Tumor radiomic features complement clinico-radiological factors in predicting long-term local control and laryngectomy free survival in locally advanced laryngo-pharyngeal cancers

    Get PDF
    OBJECTIVE: To study if pre-treatment CT texture features in locally advanced squamous cell carcinoma of laryngo-pharynx can predict long-term local control and laryngectomy free survival (LFS). METHODS: Image texture features of 60 patients treated with chemoradiation (CTRT) within an ethically approved study were studied on contrast-enhanced images using a texture analysis research software (TexRad, UK). A filtration-histogram technique was used where the filtration step extracted and enhanced features of different sizes and intensity variations corresponding to a particular spatial scale filter (SSF): SSF = 0 (without filtration), SSF = 2 mm (fine texture), SSF = 3-5 mm (medium texture) and SSF = 6 mm (coarse texture). Quantification by statistical and histogram technique comprised mean intensity, standard-deviation, entropy, mean positive pixels, skewness and kurtosis. The ability of texture analysis to predict LFS or local control was determined using Kaplan-Meier analysis and multivariate cox model. RESULTS: Median follow-up of patients was 24 months (95% CI:20-28). 39 (65%) patients were locally controlled at last follow-up. 10 (16%) had undergone salvage laryngectomy after CTRT. For both local control & LFS, threshold optimal cut-off values of texture features were analyzed. Medium filtered-texture feature that were associated with poorer laryngectomy free survival were entropy ≄4.54, (p = 0.006), kurtosis ≄4.18; p = 0.019, skewness ≀-0.59, p = 0.001, and standard deviation ≄43.18; p = 0.009). Inferior local control was associated with medium filtered features entropy ≄4.54; p 0.01 and skewness ≀ - 0.12; p = 0.02. Using fine filters, entropy ≄4.29 and kurtosis ≄-0.27 were also associated with inferior local control (p = 0.01 for both parameters). Multivariate analysis showed medium filter entropy as an independent predictor for LFS and local control (p < 0.001 & p = 0.001). CONCLUSION: Medium texture entropy is a predictor for inferior local control and laryngectomy free survival in locally advanced laryngo-pharyngeal cancer and this can complement clinico-radiological factors in predicting prognosticating these tumors. ADVANCES IN KNOWLEDGE: Texture features play an important role as a surrogate imaging biomarker for predicting local control and laryngectomy free survival in locally advanced laryngo-pharyngeal tumors treated with definitive chemoradiation

    Definitive hypofractionated radiotherapy for early glottic carcinoma: experience of 55Gy in 20 fractions

    Get PDF
    Introduction: A wide variety of fractionation schedules have been employed for the treatment of early glottic cancer. The aim is to report our 10-year experience of using hypofractionated radiotherapy with 55Gy in 20 fractions at 2.75Gy per fraction. Methods: Patients treated between 2004 and 2013 with definitive radiotherapy to a dose of 55Gy in 20 fractions over 4 weeks for T1/2 N0 squamous cell carcinoma of the glottis were retrospectively identified. Patients with prior therapeutic minor surgery (eg. laser stripping, cordotomy) were included. The probabilities of local control, ultimate local control (including salvage surgery), regional control, cause specific survival (CSS) and overall survival (OS) were calculated. Results: One hundred thirty-two patients were identified. Median age was 65 years (range 33–89). Median follow up was 72 months (range 7–124). 50 (38 %), 18 (14 %) and 64 (48 %) of patients had T1a, T1b and T2 disease respectively. Five year local control and ultimate local control rates were: overall - 85.6 % and 97.3 % respectively, T1a - 91.8 % and 100 %, T1b - 81.6 and 93.8 %, and T2 - 80.9 % and 95.8 %. Five year regional control, CSS and OS rates were 95.4 %, 95.7 % and 78.8 % respectively. There were no significant associations of covariates (e.g. T-stage, extent of laryngeal extension, histological grade) with local control on univariate analysis. Only increasing age and transglottic extension in T2 disease were significantly associated with overall survival (both p <0.01). Second primary cancers developed in 17 % of patients. 13 (9.8 %) of patients required enteral tube feeding support during radiotherapy; no patients required long term enteral nutrition. One patient required a tracheostomy due to a non-functioning larynx on long term follow up. Conclusions: Hypofractionated radiation therapy with a dose of 55Gy in 20 fractions for early stage glottic cancer provides high rates of local control with acceptable toxicity

    Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group

    Get PDF
    BACKGROUND AND PURPOSE: The Meta-Analysis of Chemotherapy in squamous cell Head and Neck Cancer (MACH-NC) demonstrated that concomitant chemotherapy (CT) improved overall survival (OS) in patients without distant metastasis. We report the updated results. MATERIALS AND METHODS: Published or unpublished randomized trials including patients with non-metastatic carcinoma randomized between 1965 and 2016 and comparing curative loco-regional treatment (LRT) to LRT + CT or adding another timing of CT to LRT + CT (main question), or comparing induction CT + radiotherapy to radiotherapy + concomitant (or alternating) CT (secondary question) were eligible. Individual patient data were collected and combined using a fixed-effect model. OS was the main endpoint. RESULTS: For the main question, 101 trials (18951 patients, median follow-up of 6.5 years) were analyzed. For both questions, there were 16 new (2767 patients) and 11 updated trials. Around 90% of the patients had stage III or IV disease. Interaction between treatment effect on OS and the timing of CT was significant (p < 0.0001), the benefit being limited to concomitant CT (HR: 0.83, 95%CI [0.79; 0.86]; 5(10)-year absolute benefit of 6.5% (3.6%)). Efficacy decreased as patients age increased (p_trend = 0.03). OS was not increased by the addition of induction (HR = 0.96 [0.90; 1.01]) or adjuvant CT (1.02 [0.92; 1.13]). Efficacy of induction CT decreased with poorer performance status (p_trend = 0.03). For the secondary question, eight trials (1214 patients) confirmed the superiority of concomitant CT on OS (HR = 0.84 [0.74; 0.95], p = 0.005). CONCLUSION: The update of MACH-NC confirms the benefit and superiority of the addition of concomitant CT for non-metastatic head and neck cancer

    TOI-1055 b: Neptunian planet characterised with HARPS, TESS, and CHEOPS

    Get PDF
    CONTEXT: TOI-1055 is a Sun-like star known to host a transiting Neptune-sized planet on a 17.5-day orbit (TOI-1055 b). Radial velocity (RV) analyses carried out by two independent groups using nearly the same set of HARPS spectra have provided measurements of planetary masses that differ by ∌2σ. AIMS: Our aim in this work is to solve the inconsistency in the published planetary masses by significantly extending the set of HARPS RV measurements and employing a new analysis tool that is able to account and correct for stellar activity. Our further aim was to improve the precision on measurements of the planetary radius by observing two transits of the planet with the CHEOPS space telescope. METHODS: We fit a skew normal function to each cross correlation function extracted from the HARPS spectra to obtain RV measurements and hyperparameters to be used for the detrending. We evaluated the correlation changes of the hyperparameters along the RV time series using the breakpoint technique. We performed a joint photometric and RV analysis using a Markov chain Monte Carlo scheme to simultaneously detrend the light curves and the RV time series. RESULTS: We firmly detected the Keplerian signal of TOI-1055 b, deriving a planetary mass of Mb = 20.4−2.5+2.6 M⊕ (∌12%). This value is in agreement with one of the two estimates in the literature, but it is significantly more precise. Thanks to the TESS transit light curves combined with exquisite CHEOPS photometry, we also derived a planetary radius of Rb = 3.490−0.064+0.070 R⊕ (∌1.9%). Our mass and radius measurements imply a mean density of ρb = 2.65−0.35+0.37 g cm−3 (∌14%). We further inferred the planetary structure and found that TOI-1055 b is very likely to host a substantial gas envelope with a mass of 0.41−0.20+0.34 M⊕ and a thickness of 1.05−0.29+0.30 R⊕. CONCLUSIONS: Our RV extraction combined with the breakpoint technique has played a key role in the optimal removal of stellar activity from the HARPS time series, enabling us to solve the tension in the planetary mass values published so far for TOI-1055 b

    The planetary system around HD 190622 (TOI-1054): Measuring the gas content of low-mass planets orbiting F-stars

    Get PDF
    Context. Giant planets are known to dominate the long-term stability of planetary systems due to their prevailing gravitational interactions, but they are also thought to play an important role in planet formation. Observational constraints improve our understanding of planetary formation processes such as the delivery of volatile-rich planetesimals from beyond the ice line into the inner planetary system. Additional constraints may come from studies of the atmosphere, but almost all such studies of the atmosphere investigate the detection of certain species, and abundances are not routinely quantitatively measured. Aims. Accurate measurements of planetary bulk parameters-that is, mass and density-provide constraints on the inner structure and chemical composition of transiting planets. This information provides insight into properties such as the amounts of volatile species, which in turn can be related to formation and evolution processes. Methods. The Transiting Exoplanet Survey Satellite (TESS) reported a planetary candidate around HD 190622 (TOI-1054), which was subsequently validated and found to merit further characterization with photometric and spectroscopic facilities. The KESPRINT collaboration used data from the High Accuracy Radial Velocity Planet Searcher (HARPS) to independently confirm the planetary candidate, securing its mass, and revealing the presence of an outer giant planet in the system. The CHEOPS consortium invested telescope time in the transiting target in order to reduce the uncertainty on the radius, improving the characterization of the planet. Results. We present the discovery and characterization of the planetary system around HD 190622 (TOI-1054). This system hosts one transiting planet, which is smaller than Neptune (3.087-0.053+0.058REarth, 7.7 ± 1.0 MEarth) but has a similar bulk density (1.43 ± 0.21 g cm-3) and an orbital period of 16 days; and a giant planet, not known to be transiting, with a minimum mass of 227.0 ± 6.7 MEarth in an orbit with a period of 315 days. Conclusions. Our measurements constrain the structure and composition of the transiting planet. HD 190622b has singular properties among the known population of transiting planets, which we discuss in detail. Among the sub-Neptune-sized planets known today, this planet stands out because of its large gas content

    Hint of an exocomet transit in the CHEOPS light curve of HD 172555

    Get PDF
    HD 172555 is a young (~20 Myr) A7V star surrounded by a 10 au wide debris disk suspected to be replenished partly by collisions between large planetesimals. Small evaporating transiting bodies, that is exocomets, have also been detected in this system by spectroscopy. After ÎČ Pictoris, this is another example of a system possibly witnessing a phase of the heavy bombardment of planetesimals. In such a system, small bodies trace dynamical evolution processes. We aim to constrain their dust content by using transit photometry. We performed a 2-day-long photometric monitoring of HD 172555 with the CHEOPS space telescope in order to detect shallow transits of exocomets with a typical expected duration of a few hours. The large oscillations in the light curve indicate that HD 172555 is a ÎŽ Scuti pulsating star. After removing those dominating oscillations, we found a hint of a transient absorption. If fitted with an exocomet transit model, it would correspond to an evaporating body passing near the star at a distance of 6.8±1.4R★ (or 0.05±0.01 au) with a radius of 2.5 km. These properties are comparable to those of the exocomets already found in this system using spectroscopy, as well as those found in the ÎČ Pic system. The nuclei of the Solar System's Jupiter family comets, with radii of 2-6 km, are also comparable in size. This is the first piece of evidence of an exocomet photometric transit detection in the young system of HD 172555
    • 

    corecore