204 research outputs found

    Typical state of an isolated quantum system with fixed energy and unrestricted participation of eigenstates

    Full text link
    This work describes the statistics for the occupation numbers of quantum levels in a large isolated quantum system, where all possible superpositions of eigenstates are allowed, provided all these superpositions have the same fixed energy. Such a condition is not equivalent to the conventional micro-canonical condition, because the latter limits the participating eigenstates to a very narrow energy window. The statistics is obtained analytically for both the entire system and its small subsystem. In a significant departure from the Boltzmann-Gibbs statistics, the average occupation numbers of quantum states exhibit in the present case weak algebraic dependence on energy. In the macroscopic limit, this dependence is routinely accompanied by the condensation into the lowest energy quantum state. This work contains initial numerical tests of the above statistics for finite systems, and also reports the following numerical finding: When the basis states of large but finite random matrix Hamiltonians are expanded in terms of eigenstates, the participation of eigenstates in such an expansion obeys the newly obtained statistics. The above statistics might be observable in small quantum systems, but for the macroscopic systems, it rather reenforces doubts about self-sufficiency of non-relativistic quantum mechanics for justifying the Boltzmann-Gibbs equilibrium.Comment: 20 pages, 3 figure

    Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases: Exploiting Bose-Fermi mappings for generalized contact interactions

    Get PDF
    Using a combination of results from exact mappings and from mean-field theory we explore the phase diagram of quasi-one-dimensional systems of identical fermions with attractive dipolar interactions. We demonstrate that at low density these systems provide a realization of a single-component one-dimensional Fermi gas with a generalized contact interaction. Using an exact duality between one-dimensional Fermi and Bose gases, we show that when the dipole moment is strong enough, bound many-body states exist, and we calculate the critical coupling strength for the emergence of these states. At higher densities, the Hartree-Fock approximation is accurate, and by combining the two approaches we determine the structure of the phase diagram. The many-body bound states should be accessible in future experiments with ultracold polar molecules

    Spectral properties of quantum NN-body systems versus chaotic properties of their mean field approximations

    Full text link
    We present numerical evidence that in a system of interacting bosons there exists a correspondence between the spectral properties of the exact quantum Hamiltonian and the dynamical chaos of the associated mean field evolution. This correspondence, analogous to the usual quantum-classical correspondence, is related to the formal parallel between the second quantization of the mean field, which generates the exact dynamics of the quantum NN-body system, and the first quantization of classical canonical coordinates. The limit of infinite density and the thermodynamic limit are then briefly discussed.Comment: 15 pages RevTeX, 11 postscript figures included with psfig, uuencoded gz-compressed .tar fil

    Coherent States Expectation Values as Semiclassical Trajectories

    Full text link
    We study the time evolution of the expectation value of the anharmonic oscillator coordinate in a coherent state as a toy model for understanding the semiclassical solutions in quantum field theory. By using the deformation quantization techniques, we show that the coherent state expectation value can be expanded in powers of â„Ź\hbar such that the zeroth-order term is a classical solution while the first-order correction is given as a phase-space Laplacian acting on the classical solution. This is then compared to the effective action solution for the one-dimensional \f^4 perturbative quantum field theory. We find an agreement up to the order \l\hbar, where \l is the coupling constant, while at the order \l^2 \hbar there is a disagreement. Hence the coherent state expectation values define an alternative semiclassical dynamics to that of the effective action. The coherent state semiclassical trajectories are exactly computable and they can coincide with the effective action trajectories in the case of two-dimensional integrable field theories.Comment: 20 pages, no figure

    Chaotic properties of quantum many-body systems in the thermodynamic limit

    Full text link
    By using numerical simulations, we investigate the dynamics of a quantum system of interacting bosons. We find an increase of properly defined mixing properties when the number of particles increases at constant density or the interaction strength drives the system away from integrability. A correspondence with the dynamical chaoticity of an associated cc-number system is then used to infer properties of the quantum system in the thermodynamic limit.Comment: 4 pages RevTeX, 4 postscript figures included with psfig; Completely restructured version with new results on mixing properties added

    Chaos in effective classical and quantum dynamics

    Full text link
    We investigate the dynamics of classical and quantum N-component phi^4 oscillators in the presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behaviour is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg's principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.Comment: 6 pages, RevTeX, 5 figures, uses psfig, changed indroduction and conclusions, added reference

    Fluctuations in Stationary non Equilibrium States

    Full text link
    In this paper we formulate a dynamical fluctuation theory for stationary non equilibrium states (SNS) which covers situations in a nonlinear hydrodynamic regime and is verified explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Our results include the modification of the Onsager-Machlup theory in the SNS, a general Hamilton-Jacobi equation for the macroscopic entropy and a non equilibrium, non linear fluctuation dissipation relation valid for a wide class of systems

    Generalized Central Limit Theorem and Renormalization Group

    Full text link
    We introduce a simple instance of the renormalization group transformation in the Banach space of probability densities. By changing the scaling of the renormalized variables we obtain, as fixed points of the transformation, the L\'evy strictly stable laws. We also investigate the behavior of the transformation around these fixed points and the domain of attraction for different values of the scaling parameter. The physical interest of a renormalization group approach to the generalized central limit theorem is discussed.Comment: 16 pages, to appear in J. Stat. Phy

    Asymmetric Landau-Zener tunneling in a periodic potential

    Full text link
    Using a simple model for nonlinear Landau-Zener tunneling between two energy bands of a Bose-Einstein condensate in a periodic potential, we find that the tunneling rates for the two directions of tunneling are not the same. Tunneling from the ground state to the excited state is enhanced by the nonlinearity, whereas in the opposite direction it is suppressed. These findings are confirmed by numerical simulations of the condensate dynamics. Measuring the tunneling rates for a condensate of rubidium atoms in an optical lattice, we have found experimental evidence for this asymmetry.Comment: 5 pages, 3 figure
    • …
    corecore