11,554 research outputs found

    Strict detector-efficiency bounds for n-site Clauser-Horne inequalities

    Get PDF
    An analysis of detector-efficiency in many-site Clauser-Horne inequalities is presented, for the case of perfect visibility. It is shown that there is a violation of the presented n-site Clauser-Horne inequalities if and only if the efficiency is greater than n/(2n-1). Thus, for a two-site two-setting experiment there are no quantum-mechanical predictions that violate local realism unless the efficiency is greater than 2/3. Secondly, there are n-site experiments for which the quantum-mechanical predictions violate local realism whenever the efficiency exceeds 1/2.Comment: revtex, 5 pages, 1 figure (typesetting changes only

    Achieving a healthy indoor environment by using an emissions barrier to stop the spread of chemicals from a building into the indoor air

    Get PDF
    An emissions barrier was used in a premises due to complaints about the indoor air quality (IAQ) as a result of emissions from the building in question. The emissions comprised chlorophenols/chloroanisoles and polycyclic aromatic hydrocarbons (PAH) from treated wood and volatile organic compounds (VOCs), mainly 2-ethylhexanol, from polyvinyl chloride (PVC) flooring and the glue used to paste the flooring onto a concrete slab. Attaching the barrier at the surfaces from where the emissions were spread (floor, walls, ceilings) resulted in a fresh and odour-free indoor air. We conclude that using an emissions barrier in buildings made unhealthy by moisture is an efficient way of restoring pleasant and healthy indoor air

    Minimum detection efficiency for a loophole-free atom-photon Bell experiment

    Get PDF
    In Bell experiments, one problem is to achieve high enough photodetection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon non-maximally entangled state, a photodetection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment whenever the photodetection efficiency exceeds 0.50.Comment: REVTeX4, 4 pages, 1 figur

    Corporate Financing in Great Britain

    Get PDF
    Background: The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA). Methodology/Principal Findings: The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH) activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 mu M, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component) of 34 mu M. Conclusions/Significance: The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer

    Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710

    Full text link
    Aims. The observation of gamma -ray flares from blazar 0836+710 in 2011, following a period of quiescence, offered an opportunity to study correlated activity at different wavelengths for a high-redshift (z=2.218) active galactic nucleus. Methods. Optical and radio monitoring, plus Fermi-LAT gamma-ray monitoring provided 2008-2012 coverage, while Swift offered auxiliary optical, ultraviolet, and X-ray information. Other contemporaneous observations were used to construct a broad-band spectral energy distribution. Results. There is evidence of correlation but not a measurable lag between the optical and gamma-ray flaring emission. On the contrary, there is no clear correlation between radio and gamma-ray activity, indicating radio emission regions that are unrelated to the parts of the jet that produce the gamma-rays. The gamma-ray energy spectrum is unusual in showing a change of shape from a power law to a curved spectrum when going from the quiescent state to the active state.Comment: 11 pages, 10 figures, Accepted for publication in A&

    An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data

    Full text link
    We present a method enabling the creation of constant-uncertainty/constant-significance light curves with the data of the Fermi-Large Area Telescope (LAT). The adaptive-binning method enables more information to be encapsulated within the light curve than with the fixed-binning method. Although primarily developed for blazar studies, it can be applied to any sources. This method allows the starting and ending times of each interval to be calculated in a simple and quick way during a first step. The reported mean flux and spectral index (assuming the spectrum is a power-law distribution) in the interval are calculated via the standard LAT analysis during a second step. The absence of major caveats associated with this method has been established by means of Monte-Carlo simulations. We present the performance of this method in determining duty cycles as well as power-density spectra relative to the traditional fixed-binning method.Comment: 17 pages, 13 figures, 5 tables. Submitted to A&

    Correlation-induced conductance suppression at level degeneracy in a quantum dot

    Get PDF
    The large, level-dependent g-factors in an InSb nanowire quantum dot allow for the occurrence of a variety of level crossings in the dot. While we observe the standard conductance enhancement in the Coulomb blockade region for aligned levels with different spins due to the Kondo effect, a vanishing of the conductance is found at the alignment of levels with equal spins. This conductance suppression appears as a canyon cutting through the web of direct tunneling lines and an enclosed Coulomb blockade region. In the center of the Coulomb blockade region, we observe the predicted correlation-induced resonance, which now turns out to be part of a larger scenario. Our findings are supported by numerical and analytical calculations.Comment: 5 pages, 4 figure

    Comparing Star Formation on Large Scales in the c2d Legacy Clouds: Bolocam 1.1 mm Dust Continuum Surveys of Serpens, Perseus, and Ophiuchus

    Get PDF
    We have undertaken an unprecedentedly large 1.1 millimeter continuum survey of three nearby star forming clouds using Bolocam at the Caltech Submillimeter Observatory. We mapped the largest areas in each cloud at millimeter or submillimeter wavelengths to date: 7.5 sq. deg in Perseus (Paper I), 10.8 sq. deg in Ophiuchus (Paper II), and 1.5 sq. deg in Serpens with a resolution of 31", detecting 122, 44, and 35 cores, respectively. Here we report on results of the Serpens survey and compare the three clouds. Average measured angular core sizes and their dependence on resolution suggest that many of the observed sources are consistent with power-law density profiles. Tests of the effects of cloud distance reveal that linear resolution strongly affects measured source sizes and densities, but not the shape of the mass distribution. Core mass distribution slopes in Perseus and Ophiuchus (alpha=2.1+/-0.1 and alpha=2.1+/-0.3) are consistent with recent measurements of the stellar IMF, whereas the Serpens distribution is flatter (alpha=1.6+/-0.2). We also compare the relative mass distribution shapes to predictions from turbulent fragmentation simulations. Dense cores constitute less than 10% of the total cloud mass in all three clouds, consistent with other measurements of low star-formation efficiencies. Furthermore, most cores are found at high column densities; more than 75% of 1.1 mm cores are associated with Av>8 mag in Perseus, 15 mag in Serpens, and 20-23 mag in Ophiuchus.Comment: 32 pages, including 18 figures, accepted for publication in Ap
    • …
    corecore